{"title":"基于粒子接入思想的无线网络细粒度时延保证机制研究","authors":"K. Sun, Bo Li, Zhongjiang Yan, Mao Yang","doi":"10.1051/jnwpu/20234110081","DOIUrl":null,"url":null,"abstract":"Aiming at the problems existing in the current mechanisms of delay guarantee in wireless networks(i.e. poor scalability, coarse granularity for provided service levels, and improving delay performance at the expense of sacrificing some resource utilization), this paper puts forward both the idea of particle access and the corresponding access mechanism. In this paper, a traffic flow is modeled as a group of information particles that carry a certain amount of information and are valid for certain periods of time. Firstly, the definitions of information particles and the group of information particles are given. It is proved that the minimum reachable access bandwidth of an information particle group can be achieved by using the EDF(earliest deadline first) transmission strategy. Moreover, a fine-grained mechanism of delay guarantee based on the idea of particle access is proposed for the dynamic access environment in wireless networks. Extensive simulations are carried out for the application scenario of downlink transmissions, and it is shown that, in the case of heavy traffic loads, comparing with the rapid growth of the average packet delays and the packet loss rates in a legacy access mechanism, the proposed fine-grained access strategy based on the idea of particle access can also achieve the better performance on the average packet delays and the packet loss rates, and hence higher effective throughput is obtained. The research in this paper pave a new way for further improving quality of service (QoS) mechanisms of wireless networks.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on fine-grained mechanism of delay guarantee based on idea of particle access in wireless networks\",\"authors\":\"K. Sun, Bo Li, Zhongjiang Yan, Mao Yang\",\"doi\":\"10.1051/jnwpu/20234110081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems existing in the current mechanisms of delay guarantee in wireless networks(i.e. poor scalability, coarse granularity for provided service levels, and improving delay performance at the expense of sacrificing some resource utilization), this paper puts forward both the idea of particle access and the corresponding access mechanism. In this paper, a traffic flow is modeled as a group of information particles that carry a certain amount of information and are valid for certain periods of time. Firstly, the definitions of information particles and the group of information particles are given. It is proved that the minimum reachable access bandwidth of an information particle group can be achieved by using the EDF(earliest deadline first) transmission strategy. Moreover, a fine-grained mechanism of delay guarantee based on the idea of particle access is proposed for the dynamic access environment in wireless networks. Extensive simulations are carried out for the application scenario of downlink transmissions, and it is shown that, in the case of heavy traffic loads, comparing with the rapid growth of the average packet delays and the packet loss rates in a legacy access mechanism, the proposed fine-grained access strategy based on the idea of particle access can also achieve the better performance on the average packet delays and the packet loss rates, and hence higher effective throughput is obtained. The research in this paper pave a new way for further improving quality of service (QoS) mechanisms of wireless networks.\",\"PeriodicalId\":39691,\"journal\":{\"name\":\"西北工业大学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"西北工业大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/jnwpu/20234110081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20234110081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Study on fine-grained mechanism of delay guarantee based on idea of particle access in wireless networks
Aiming at the problems existing in the current mechanisms of delay guarantee in wireless networks(i.e. poor scalability, coarse granularity for provided service levels, and improving delay performance at the expense of sacrificing some resource utilization), this paper puts forward both the idea of particle access and the corresponding access mechanism. In this paper, a traffic flow is modeled as a group of information particles that carry a certain amount of information and are valid for certain periods of time. Firstly, the definitions of information particles and the group of information particles are given. It is proved that the minimum reachable access bandwidth of an information particle group can be achieved by using the EDF(earliest deadline first) transmission strategy. Moreover, a fine-grained mechanism of delay guarantee based on the idea of particle access is proposed for the dynamic access environment in wireless networks. Extensive simulations are carried out for the application scenario of downlink transmissions, and it is shown that, in the case of heavy traffic loads, comparing with the rapid growth of the average packet delays and the packet loss rates in a legacy access mechanism, the proposed fine-grained access strategy based on the idea of particle access can also achieve the better performance on the average packet delays and the packet loss rates, and hence higher effective throughput is obtained. The research in this paper pave a new way for further improving quality of service (QoS) mechanisms of wireless networks.