癌症可溶性免疫检查点分子和疾病相关细胞因子的检测:疾病诊断和监测的新范式

Nidhi Pandey, Debarati Biswas, Nirmita Dutta, Anita Hansda, Gorachand Dutta, G. Mukherjee
{"title":"癌症可溶性免疫检查点分子和疾病相关细胞因子的检测:疾病诊断和监测的新范式","authors":"Nidhi Pandey, Debarati Biswas, Nirmita Dutta, Anita Hansda, Gorachand Dutta, G. Mukherjee","doi":"10.3389/fsens.2022.789771","DOIUrl":null,"url":null,"abstract":"Conventional detection of cancer involves highly invasive and expensive diagnostic procedures, often leading to non-compliance from patients. Therefore, there is a strong requirement for the development of non-invasive techniques that can facilitate rapid and timely diagnosis of the disease. The tumor-immune interaction often leads to anomalous expression of different soluble immune signaling molecules like cytokines and chemokines, thus making them promising candidates for sensing disease development and progression. Furthermore, differential expression of soluble isoforms of several immune-checkpoint molecules like PD-L1, CTLA-4 etc., has been found to have strong correlation with tissue-specific tumor development, disease progression and in many cases, disease prognosis. Therefore, development of biosensors, to rapidly detect and analyze the levels of these soluble immune molecules in different body fluids, requiring minimal sample volume, has the potential to be a game-changer in the field of cancer diagnosis. In addition, real time monitoring of these soluble immune checkpoint molecules in patient-derived biofluids may serve as decision support tools for patient selection for immunotherapeutic interventions. Majority of the biosensors designed to detect the soluble immune biomarkers, have used a two-antibody based sandwich system to capture the target analyte. However, new technologies using bioreceptors like the aptamers or nano-yeast scFv antibody fragments have made possible multiplexed detection of several analytes simultaneously. The use of gold nanoparticles or carbon nanotubes on the electrode surface serves to increase the sensitivity of detection, due to their high electrical conductivity. Further, fabrication of the biosensors on microfluidic platforms enable the detection of these analytes at ultra-low levels. This review discusses the recent advances made in the development of biosensors for specific and selective detection of these immune-markers that can be successfully translated to the clinics as a new paradigm in disease diagnosis and monitoring.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sensing Soluble Immune Checkpoint Molecules and Disease-Relevant Cytokines in Cancer: A Novel Paradigm in Disease Diagnosis and Monitoring\",\"authors\":\"Nidhi Pandey, Debarati Biswas, Nirmita Dutta, Anita Hansda, Gorachand Dutta, G. Mukherjee\",\"doi\":\"10.3389/fsens.2022.789771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional detection of cancer involves highly invasive and expensive diagnostic procedures, often leading to non-compliance from patients. Therefore, there is a strong requirement for the development of non-invasive techniques that can facilitate rapid and timely diagnosis of the disease. The tumor-immune interaction often leads to anomalous expression of different soluble immune signaling molecules like cytokines and chemokines, thus making them promising candidates for sensing disease development and progression. Furthermore, differential expression of soluble isoforms of several immune-checkpoint molecules like PD-L1, CTLA-4 etc., has been found to have strong correlation with tissue-specific tumor development, disease progression and in many cases, disease prognosis. Therefore, development of biosensors, to rapidly detect and analyze the levels of these soluble immune molecules in different body fluids, requiring minimal sample volume, has the potential to be a game-changer in the field of cancer diagnosis. In addition, real time monitoring of these soluble immune checkpoint molecules in patient-derived biofluids may serve as decision support tools for patient selection for immunotherapeutic interventions. Majority of the biosensors designed to detect the soluble immune biomarkers, have used a two-antibody based sandwich system to capture the target analyte. However, new technologies using bioreceptors like the aptamers or nano-yeast scFv antibody fragments have made possible multiplexed detection of several analytes simultaneously. The use of gold nanoparticles or carbon nanotubes on the electrode surface serves to increase the sensitivity of detection, due to their high electrical conductivity. Further, fabrication of the biosensors on microfluidic platforms enable the detection of these analytes at ultra-low levels. This review discusses the recent advances made in the development of biosensors for specific and selective detection of these immune-markers that can be successfully translated to the clinics as a new paradigm in disease diagnosis and monitoring.\",\"PeriodicalId\":93754,\"journal\":{\"name\":\"Frontiers in sensors\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsens.2022.789771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsens.2022.789771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

癌症的常规检测涉及高度侵入性和昂贵的诊断程序,通常导致患者不遵守。因此,迫切需要开发能够促进疾病快速及时诊断的非侵入性技术。肿瘤与免疫的相互作用往往导致不同可溶性免疫信号分子(如细胞因子和趋化因子)的异常表达,从而使它们成为感知疾病发展和进展的有前途的候选者。此外,已经发现几种免疫检查点分子如PD-L1、CTLA-4等的可溶性亚型的差异表达与组织特异性肿瘤的发展、疾病进展以及在许多情况下的疾病预后具有强烈的相关性。因此,开发生物传感器,以快速检测和分析这些可溶性免疫分子在不同体液中的水平,需要最小的样本量,有可能成为癌症诊断领域的游戏选择。此外,对患者衍生的生物流体中这些可溶性免疫检查点分子的实时监测可以作为患者选择免疫治疗干预措施的决策支持工具。大多数设计用于检测可溶性免疫生物标志物的生物传感器都使用了基于双抗体的三明治系统来捕获目标分析物。然而,使用生物受体(如适体或纳米酵母scFv抗体片段)的新技术使得同时对几种分析物进行多重检测成为可能。在电极表面上使用金纳米颗粒或碳纳米管由于其高导电性而有助于提高检测的灵敏度。此外,在微流体平台上制造生物传感器能够以超低水平检测这些分析物。这篇综述讨论了用于特异性和选择性检测这些免疫标志物的生物传感器的最新进展,这些生物传感器可以作为疾病诊断和监测的新范式成功地应用于临床。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensing Soluble Immune Checkpoint Molecules and Disease-Relevant Cytokines in Cancer: A Novel Paradigm in Disease Diagnosis and Monitoring
Conventional detection of cancer involves highly invasive and expensive diagnostic procedures, often leading to non-compliance from patients. Therefore, there is a strong requirement for the development of non-invasive techniques that can facilitate rapid and timely diagnosis of the disease. The tumor-immune interaction often leads to anomalous expression of different soluble immune signaling molecules like cytokines and chemokines, thus making them promising candidates for sensing disease development and progression. Furthermore, differential expression of soluble isoforms of several immune-checkpoint molecules like PD-L1, CTLA-4 etc., has been found to have strong correlation with tissue-specific tumor development, disease progression and in many cases, disease prognosis. Therefore, development of biosensors, to rapidly detect and analyze the levels of these soluble immune molecules in different body fluids, requiring minimal sample volume, has the potential to be a game-changer in the field of cancer diagnosis. In addition, real time monitoring of these soluble immune checkpoint molecules in patient-derived biofluids may serve as decision support tools for patient selection for immunotherapeutic interventions. Majority of the biosensors designed to detect the soluble immune biomarkers, have used a two-antibody based sandwich system to capture the target analyte. However, new technologies using bioreceptors like the aptamers or nano-yeast scFv antibody fragments have made possible multiplexed detection of several analytes simultaneously. The use of gold nanoparticles or carbon nanotubes on the electrode surface serves to increase the sensitivity of detection, due to their high electrical conductivity. Further, fabrication of the biosensors on microfluidic platforms enable the detection of these analytes at ultra-low levels. This review discusses the recent advances made in the development of biosensors for specific and selective detection of these immune-markers that can be successfully translated to the clinics as a new paradigm in disease diagnosis and monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Thought leaders in sensor research: volume 1 Electronic tongue made of gelatin self-supporting films on printed electrodes to detect lactose Learning control for body caudal undulation with soft sensory feedback Erratum: AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection Evaluation of a point-of-use device used for autoantibody analysis and its potential for following microcystin leucine-arginine exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1