构建潜在阶级树,并应用于社会资本的研究

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2017-06-02 DOI:10.1027/1614-2241/A000128
M. V. D. Bergh, V. Schmittmann, J. Vermunt
{"title":"构建潜在阶级树,并应用于社会资本的研究","authors":"M. V. D. Bergh, V. Schmittmann, J. Vermunt","doi":"10.1027/1614-2241/A000128","DOIUrl":null,"url":null,"abstract":"Abstract. Researchers use latent class (LC) analysis to derive meaningful clusters from sets of categorical variables. However, especially when the number of classes required to obtain a good fit is large, interpretation of the latent classes may not be straightforward. To overcome this problem, we propose an alternative way of performing LC analysis, Latent Class Tree (LCT) modeling. For this purpose, a recursive partitioning procedure similar to divisive hierarchical cluster analysis is used: classes are split until a certain criterion indicates that the fit does not improve. The advantage of the LCT approach compared to the standard LC approach is that it gives a clear insight into how the latent classes are formed and how solutions with different numbers of classes relate. We also propose measures to evaluate the relative importance of the splits. The practical use of the approach is illustrated by the analysis of a data set on social capital.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Building latent class trees, with an application to a study of social capital\",\"authors\":\"M. V. D. Bergh, V. Schmittmann, J. Vermunt\",\"doi\":\"10.1027/1614-2241/A000128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Researchers use latent class (LC) analysis to derive meaningful clusters from sets of categorical variables. However, especially when the number of classes required to obtain a good fit is large, interpretation of the latent classes may not be straightforward. To overcome this problem, we propose an alternative way of performing LC analysis, Latent Class Tree (LCT) modeling. For this purpose, a recursive partitioning procedure similar to divisive hierarchical cluster analysis is used: classes are split until a certain criterion indicates that the fit does not improve. The advantage of the LCT approach compared to the standard LC approach is that it gives a clear insight into how the latent classes are formed and how solutions with different numbers of classes relate. We also propose measures to evaluate the relative importance of the splits. The practical use of the approach is illustrated by the analysis of a data set on social capital.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2017-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/A000128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 18

摘要

摘要研究人员使用潜在类(LC)分析从分类变量集合中得出有意义的聚类。然而,特别是当获得良好拟合所需的类的数量很大时,对潜在类的解释可能并不简单。为了克服这个问题,我们提出了一种执行LC分析的替代方法,即潜在类树(LCT)建模。为此,使用了类似于分裂层次聚类分析的递归划分过程:类被分割,直到某个标准表明拟合没有改善。与标准LC方法相比,LCT方法的优势在于,它可以清楚地了解潜在类是如何形成的,以及具有不同类数的解决方案是如何关联的。我们还提出了评估分裂相对重要性的措施。通过对社会资本数据集的分析说明了该方法的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building latent class trees, with an application to a study of social capital
Abstract. Researchers use latent class (LC) analysis to derive meaningful clusters from sets of categorical variables. However, especially when the number of classes required to obtain a good fit is large, interpretation of the latent classes may not be straightforward. To overcome this problem, we propose an alternative way of performing LC analysis, Latent Class Tree (LCT) modeling. For this purpose, a recursive partitioning procedure similar to divisive hierarchical cluster analysis is used: classes are split until a certain criterion indicates that the fit does not improve. The advantage of the LCT approach compared to the standard LC approach is that it gives a clear insight into how the latent classes are formed and how solutions with different numbers of classes relate. We also propose measures to evaluate the relative importance of the splits. The practical use of the approach is illustrated by the analysis of a data set on social capital.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1