{"title":"空间数据缺失的一种解:公共相关效应估计量","authors":"M. Beenstock, D. Felsenstein","doi":"10.1177/0160017620959132","DOIUrl":null,"url":null,"abstract":"Informed regional policy needs good regional data. As regional data series for key economic variables are generally absent whereas national-level time series data for the same variables are ubiquitous, we suggest an approach that leverages this advantage. We hypothesize the existence of a pervasive “common factor” represented by the national time series that affects regions differentially. We provide an empirical illustration in which national FDI is used in place of panel data for FDI, which are absent. The proposed methodology is tested empirically with respect to the determinants of regional demand for housing. We use a quasi-experimental approach to compare the results of a “common correlated effects” (CCE) estimator with a benchmark case when absent regional data are omitted. Using three common factors relating to national population, income and housing stock, we find mixed support for the common correlated effects hypothesis. We conclude by discussing how our experimental design may serve as a methodological prototype for further tests of CCE as a solution to the absent spatial data problem.","PeriodicalId":51507,"journal":{"name":"International Regional Science Review","volume":"44 1","pages":"466 - 484"},"PeriodicalIF":1.8000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0160017620959132","citationCount":"3","resultStr":"{\"title\":\"A Solution for Absent Spatial Data: The Common Correlated Effects Estimator\",\"authors\":\"M. Beenstock, D. Felsenstein\",\"doi\":\"10.1177/0160017620959132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Informed regional policy needs good regional data. As regional data series for key economic variables are generally absent whereas national-level time series data for the same variables are ubiquitous, we suggest an approach that leverages this advantage. We hypothesize the existence of a pervasive “common factor” represented by the national time series that affects regions differentially. We provide an empirical illustration in which national FDI is used in place of panel data for FDI, which are absent. The proposed methodology is tested empirically with respect to the determinants of regional demand for housing. We use a quasi-experimental approach to compare the results of a “common correlated effects” (CCE) estimator with a benchmark case when absent regional data are omitted. Using three common factors relating to national population, income and housing stock, we find mixed support for the common correlated effects hypothesis. We conclude by discussing how our experimental design may serve as a methodological prototype for further tests of CCE as a solution to the absent spatial data problem.\",\"PeriodicalId\":51507,\"journal\":{\"name\":\"International Regional Science Review\",\"volume\":\"44 1\",\"pages\":\"466 - 484\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0160017620959132\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Regional Science Review\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1177/0160017620959132\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Regional Science Review","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1177/0160017620959132","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
A Solution for Absent Spatial Data: The Common Correlated Effects Estimator
Informed regional policy needs good regional data. As regional data series for key economic variables are generally absent whereas national-level time series data for the same variables are ubiquitous, we suggest an approach that leverages this advantage. We hypothesize the existence of a pervasive “common factor” represented by the national time series that affects regions differentially. We provide an empirical illustration in which national FDI is used in place of panel data for FDI, which are absent. The proposed methodology is tested empirically with respect to the determinants of regional demand for housing. We use a quasi-experimental approach to compare the results of a “common correlated effects” (CCE) estimator with a benchmark case when absent regional data are omitted. Using three common factors relating to national population, income and housing stock, we find mixed support for the common correlated effects hypothesis. We conclude by discussing how our experimental design may serve as a methodological prototype for further tests of CCE as a solution to the absent spatial data problem.
期刊介绍:
International Regional Science Review serves as an international forum for economists, geographers, planners, and other social scientists to share important research findings and methodological breakthroughs. The journal serves as a catalyst for improving spatial and regional analysis within the social sciences and stimulating communication among the disciplines. IRSR deliberately helps define regional science by publishing key interdisciplinary survey articles that summarize and evaluate previous research and identify fruitful research directions. Focusing on issues of theory, method, and public policy where the spatial or regional dimension is central, IRSR strives to promote useful scholarly research that is securely tied to the real world.