利用长波阵列搜索宇宙黎明

IF 1.5 Q3 ASTRONOMY & ASTROPHYSICS Journal of Astronomical Instrumentation Pub Date : 2020-02-01 DOI:10.1142/S2251171720500087
C. Dilullo, G. Taylor, J. Dowell
{"title":"利用长波阵列搜索宇宙黎明","authors":"C. Dilullo, G. Taylor, J. Dowell","doi":"10.1142/S2251171720500087","DOIUrl":null,"url":null,"abstract":"The search for the spectral signature of hydrogen from the formation of the first stars, known as Cosmic Dawn or First Light, is an ongoing effort around the world. The signature should present itself as a decrease in the temperature of the 21[Formula: see text]cm transition relative to that of the Cosmic Microwave Background and is believed to reside somewhere below 100[Formula: see text]MHz. A potential detection was published by the Experiment to Detect the Global EoR Signal (EDGES) collaboration with a profile centered around 78[Formula: see text]MHz of both unexpected depth and width (Bowman et al. [2018] Nature 555, 67). If validated, this detection will have profound impacts on the current paradigm of structure formation within [Formula: see text]CDM cosmology. We present an attempt to detect the spectral signature reported by the EDGES collaboration with the Long Wavelength Array station located on the Sevilleta National Wildlife Refuge in New Mexico, USA (LWA-SV). LWA-SV differs from other instruments in that it is a 256 element antenna array and offers beamforming capabilisties that should help with calibration and detection. We report first limits from LWA-SV and look toward future plans to improve these limits.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171720500087","citationCount":"6","resultStr":"{\"title\":\"Using the Long Wavelength Array to Search for Cosmic Dawn\",\"authors\":\"C. Dilullo, G. Taylor, J. Dowell\",\"doi\":\"10.1142/S2251171720500087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The search for the spectral signature of hydrogen from the formation of the first stars, known as Cosmic Dawn or First Light, is an ongoing effort around the world. The signature should present itself as a decrease in the temperature of the 21[Formula: see text]cm transition relative to that of the Cosmic Microwave Background and is believed to reside somewhere below 100[Formula: see text]MHz. A potential detection was published by the Experiment to Detect the Global EoR Signal (EDGES) collaboration with a profile centered around 78[Formula: see text]MHz of both unexpected depth and width (Bowman et al. [2018] Nature 555, 67). If validated, this detection will have profound impacts on the current paradigm of structure formation within [Formula: see text]CDM cosmology. We present an attempt to detect the spectral signature reported by the EDGES collaboration with the Long Wavelength Array station located on the Sevilleta National Wildlife Refuge in New Mexico, USA (LWA-SV). LWA-SV differs from other instruments in that it is a 256 element antenna array and offers beamforming capabilisties that should help with calibration and detection. We report first limits from LWA-SV and look toward future plans to improve these limits.\",\"PeriodicalId\":45132,\"journal\":{\"name\":\"Journal of Astronomical Instrumentation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S2251171720500087\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2251171720500087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171720500087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 6

摘要

世界各地正在努力寻找第一批恒星形成时氢的光谱特征,这些恒星被称为宇宙黎明或第一光。该特征应表现为相对于宇宙微波背景的21[公式:见正文]cm跃迁的温度降低,并且被认为位于100[公式:参见正文]MHz以下的某个地方。检测全球EoR信号实验(EDGES)合作发表了一项潜在的检测,其轮廓以78[公式:见正文]MHz为中心,具有出乎意料的深度和宽度(Bowman等人[2018]Nature 555,67)。如果得到验证,这种检测将对CDM宇宙学中当前的结构形成范式产生深远影响。我们试图检测EDGES与位于美国新墨西哥州塞维利亚国家野生动物保护区(LWA-SV)的长波阵列站合作报告的光谱特征。LWA-SV与其他仪器的不同之处在于,它是一个256单元天线阵列,并提供波束形成能力,有助于校准和检测。我们报告了LWA-SV的首次限值,并展望了改进这些限值的未来计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using the Long Wavelength Array to Search for Cosmic Dawn
The search for the spectral signature of hydrogen from the formation of the first stars, known as Cosmic Dawn or First Light, is an ongoing effort around the world. The signature should present itself as a decrease in the temperature of the 21[Formula: see text]cm transition relative to that of the Cosmic Microwave Background and is believed to reside somewhere below 100[Formula: see text]MHz. A potential detection was published by the Experiment to Detect the Global EoR Signal (EDGES) collaboration with a profile centered around 78[Formula: see text]MHz of both unexpected depth and width (Bowman et al. [2018] Nature 555, 67). If validated, this detection will have profound impacts on the current paradigm of structure formation within [Formula: see text]CDM cosmology. We present an attempt to detect the spectral signature reported by the EDGES collaboration with the Long Wavelength Array station located on the Sevilleta National Wildlife Refuge in New Mexico, USA (LWA-SV). LWA-SV differs from other instruments in that it is a 256 element antenna array and offers beamforming capabilisties that should help with calibration and detection. We report first limits from LWA-SV and look toward future plans to improve these limits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Astronomical Instrumentation
Journal of Astronomical Instrumentation ASTRONOMY & ASTROPHYSICS-
CiteScore
2.30
自引率
7.70%
发文量
19
期刊介绍: The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]
期刊最新文献
Design of an Ultra-Wideband Antenna Feed and Reflector for use in Hydrogen Intensity Mapping Interferometers Low Complexity Radio Frequency Interference Mitigation for Radio Astronomy Using Large Antenna Array The Effects of the Local Environment on a Compact Radio Interferometer I: Cross-coupling in the Tianlai Dish Pathfinder Array Interferometric determination for cosmological and stellar phenomena Calibration of Spectropolarimetry Package for Visible Emission Line Coronagraph (VELC) on board Aditya-L1 Mission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1