T. Iliť, P. Valko, M. Drzik, M. Ušáková, M. Šoka, M. Marton, M. Behúl, M. Vojs
{"title":"薄膜中激光诱导磁化动力学的感应测量技术的发展","authors":"T. Iliť, P. Valko, M. Drzik, M. Ušáková, M. Šoka, M. Marton, M. Behúl, M. Vojs","doi":"10.24425/mms.2019.129577","DOIUrl":null,"url":null,"abstract":"We present the development of a technique for studying laser-induced magnetization dynamics, based on inductive measurement. The technique could provide a simple tool for studying laser-induced demagnetization in thin films and associated processes, such as Gilbert damping and magnetization precession. It was successfully tested using a nanosecond laser and NiZn ferrite samples and – after further development – it is expected to be useful for observation of ultra-fast demagnetization. The combination of optical excitation and inductive measurement enables to study laser-induced magnetization dynamics in both thin and several micrometre thick films and might be the key to a new principle of ultrafast broadband UV–IR pulse detection.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a technique for inductive measurement of laser-induced magnetization dynamics in thin films\",\"authors\":\"T. Iliť, P. Valko, M. Drzik, M. Ušáková, M. Šoka, M. Marton, M. Behúl, M. Vojs\",\"doi\":\"10.24425/mms.2019.129577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the development of a technique for studying laser-induced magnetization dynamics, based on inductive measurement. The technique could provide a simple tool for studying laser-induced demagnetization in thin films and associated processes, such as Gilbert damping and magnetization precession. It was successfully tested using a nanosecond laser and NiZn ferrite samples and – after further development – it is expected to be useful for observation of ultra-fast demagnetization. The combination of optical excitation and inductive measurement enables to study laser-induced magnetization dynamics in both thin and several micrometre thick films and might be the key to a new principle of ultrafast broadband UV–IR pulse detection.\",\"PeriodicalId\":18394,\"journal\":{\"name\":\"Metrology and Measurement Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrology and Measurement Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/mms.2019.129577\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrology and Measurement Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/mms.2019.129577","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Development of a technique for inductive measurement of laser-induced magnetization dynamics in thin films
We present the development of a technique for studying laser-induced magnetization dynamics, based on inductive measurement. The technique could provide a simple tool for studying laser-induced demagnetization in thin films and associated processes, such as Gilbert damping and magnetization precession. It was successfully tested using a nanosecond laser and NiZn ferrite samples and – after further development – it is expected to be useful for observation of ultra-fast demagnetization. The combination of optical excitation and inductive measurement enables to study laser-induced magnetization dynamics in both thin and several micrometre thick films and might be the key to a new principle of ultrafast broadband UV–IR pulse detection.
期刊介绍:
Contributions are invited on all aspects of the research, development and applications of the measurement science and technology.
The list of topics covered includes: theory and general principles of measurement; measurement of physical, chemical and biological quantities; medical measurements; sensors and transducers; measurement data acquisition; measurement signal transmission; processing and data analysis; measurement systems and embedded systems; design, manufacture and evaluation of instruments.
The average publication cycle is 6 months.