{"title":"生物手性选择场景的计算机模拟","authors":"S. Longo, Carmela Mundo, G. Micca Longo","doi":"10.1017/S147355042200009X","DOIUrl":null,"url":null,"abstract":"Abstract The biotic scenario of the selection of biological homochirality is one of the most interesting applications of computer modelling to astrobiology. These scenarios have been studied for more than 70 years, yet there are plenty of studies to better assess them, in particular in the development of models of the selective extinction process. In this paper, we review former studies performed by biology-grounded models of this process and present a new class of computer programs: they further demonstrate the complexity of the selective extinction dynamics and the role played into it by non-trivial chemical-physical concepts. Indeed, the results display large and persistent differences between the populations of the two different chiral types, made possible by the freedom of individual populations to fluctuate wildly while the total population is stabilized by the limited availability of chemical energy. Such strong differences ultimately lead to the selective extinction of one of the two types. This way, computer simulations provide increasing evidence in favour of the biotic scenario.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":"21 1","pages":"278 - 286"},"PeriodicalIF":1.7000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computer simulations of biotic chiral selection scenarios\",\"authors\":\"S. Longo, Carmela Mundo, G. Micca Longo\",\"doi\":\"10.1017/S147355042200009X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The biotic scenario of the selection of biological homochirality is one of the most interesting applications of computer modelling to astrobiology. These scenarios have been studied for more than 70 years, yet there are plenty of studies to better assess them, in particular in the development of models of the selective extinction process. In this paper, we review former studies performed by biology-grounded models of this process and present a new class of computer programs: they further demonstrate the complexity of the selective extinction dynamics and the role played into it by non-trivial chemical-physical concepts. Indeed, the results display large and persistent differences between the populations of the two different chiral types, made possible by the freedom of individual populations to fluctuate wildly while the total population is stabilized by the limited availability of chemical energy. Such strong differences ultimately lead to the selective extinction of one of the two types. This way, computer simulations provide increasing evidence in favour of the biotic scenario.\",\"PeriodicalId\":13879,\"journal\":{\"name\":\"International Journal of Astrobiology\",\"volume\":\"21 1\",\"pages\":\"278 - 286\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/S147355042200009X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/S147355042200009X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Computer simulations of biotic chiral selection scenarios
Abstract The biotic scenario of the selection of biological homochirality is one of the most interesting applications of computer modelling to astrobiology. These scenarios have been studied for more than 70 years, yet there are plenty of studies to better assess them, in particular in the development of models of the selective extinction process. In this paper, we review former studies performed by biology-grounded models of this process and present a new class of computer programs: they further demonstrate the complexity of the selective extinction dynamics and the role played into it by non-trivial chemical-physical concepts. Indeed, the results display large and persistent differences between the populations of the two different chiral types, made possible by the freedom of individual populations to fluctuate wildly while the total population is stabilized by the limited availability of chemical energy. Such strong differences ultimately lead to the selective extinction of one of the two types. This way, computer simulations provide increasing evidence in favour of the biotic scenario.
期刊介绍:
International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.