Maruthasalam Lavanya, D. Thiruarul, K. B. Rajesh, Z. Jaroszewicz
{"title":"通过介质界面生成径向变矢量光束聚焦的新型焦型","authors":"Maruthasalam Lavanya, D. Thiruarul, K. B. Rajesh, Z. Jaroszewicz","doi":"10.4302/plp.v15i1.1198","DOIUrl":null,"url":null,"abstract":"Electric and magnetic energy densities as well as energy flux (Poynting vector) for radial variant vector beam focusing through a dielectric interface is analyzed numerically based on vector diffraction theory. The electric and magnetic energy densities are tailored by properly manipulating the radial as well as initial phases to generates novel focal patterns in the focal area. These peculiar properties may find applications in fields such as optical trapping, optical recording, magnetic recording, and magnetic resonance microscopy and semiconductor inspection. Full Text: PDF References\n\nS.N. Khonina, I. Golub, \"Optimization of focusing of linearly polarized light \", Opt. Lett. 36 352 (2011). CrossRef \nV.V. Kotlyar, S.S. Stafeev, Y. Liu, L. O'Faolain, A. A. Kovalev, \"Analysis of the shape of a subwavelength focal spot for the linearly polarized light\", Appl. Opt. 52 330 (2013). CrossRef \nS. Sen, M.A. Varshney, D. Varshney, \"Relativistic Propagation of Linearly/Circularly Polarized Laser Radiation in Plasmas\", ISRN Optics. 2013 1 (2013). CrossRef \nM. Martínez-Corral, R. Martínez-Cuenca, I. Escobar, G. Saavedra, \"Reduction of focus size in tightly focused linearly polarized beams\", Appl. Phys. Lett. 85 4319 (2004) . CrossRef \nJ. Lekner, \"Polarization of tightly focused laser beams\", Opt. A: Pure Appl. Opt. 5, 6 (2003). CrossRef \nH. Guo, X. Weng, M. Jiang, Y. Zhao, G. Sui, Q. Hu, Y. Wang, S. Zhuang, \"Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters\", Opt.Express 21, 5363 (2013). CrossRef \nC.-C. Sun, C.-K. Liu, \"Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation\", Opt. Lett. 28, 99 (2003). CrossRef \nG.H. Yuan, S.B. Wei, X.-C. Yuan, \"Nondiffracting transversally polarized beam\", Opt. Lett. 36, 3479 (2011). CrossRef \nP. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, J. Tian, \"Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces\", Opt. Lett. 40, 3229 (2015). CrossRef \nZ. Chen, T. Zeng, B. Qian, \"Complete shaping of optical vector beams\", J. Ding, Opt. Express 23, 17701 (2015). CrossRef \nZ. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, S. Wen, \"Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere\", Photon. Res. 5, 15 (2017). CrossRef \nZ. Man, Z. Bai, S. Zhang, J. Li, X. Li, X. Ge, Y. Zhang, S. Fu, \"Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization\", J. Opt. Soc. Am. A 35, 1014 (2018). CrossRef \nZ. Man, S. Fu, G. Wei, \"Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization\", J. Opt. Soc. Am. A 34, 1384 (2017). CrossRef \nZ. Man et al, \"Optical cage generated by azimuthal- and radial-variant vector beams\", Appl. Opt. 57 (2018). CrossRef \nS.S. Stafeev, V.V Kotlyar, A.G. Nalimov, E.S. Kozlova, \"The Non-Vortex Inverse Propagation of Energy in a Tightly Focused High-Order Cylindrical Vector Beam\", IEEE Photon. J., 11, 1 (2019). CrossRef \nS.S. Stafeev, V.V. Kotlyar, \"Elongation of the area of energy backflow through the use of ring apertures\", Opt. Commun.450 (2019) 67-71. CrossRef \nS.S. Stafeev, V.V. Kotlyar, A.G. Nalimov, \"Energy backflow in in a tightly focused high-order cylindrical vector beam\", Proc. SPIE 11025, 1102518 (2019). CrossRef \nN.G. Orji, M. Badaroglu, B.M. Barnes, \"Metrology for the next generation of semiconductor devices\", Nat. Electron. 1, 532 (2018). CrossRef \nP. Torok, P. Varga, G.R. Booker, \"Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I\", I, J. Opt. Soc. Am. A 12, 2136 (1995). CrossRef \nP. Torok, P. Varga, Z. Laczik, G.R. Booker, \"Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation\", J. Opt. Soc. Am. A., 12, 325 (1995). CrossRef \nZ. Zhou, L. Zhu, \"Tight focusing of high order axially symmetric polarized beams through a dielectric interface\", Optik, 124, 2219 (2013). CrossRef \nJ. Shu, Z. Chen, J. Pu, Y. Liu \"Tight focusing of a double-ring-shaped, azimuthally polarized beam through a dielectric interface\", J. Opt. Soc. Am. A 31, 1180 (2014). CrossRef \nK. Hu, Z. Chen, J. Pu., \"Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface\", Opt. Lett. 37, 3303 (2012). CrossRef \nB. Richards, E. Wolf, \"Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system\", Proc. R. Soc. London A 253, 358 (1959). CrossRef \n\n ","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating novel focal patterns for radial variant vector beam focusing through a dielectric interface\",\"authors\":\"Maruthasalam Lavanya, D. Thiruarul, K. B. Rajesh, Z. Jaroszewicz\",\"doi\":\"10.4302/plp.v15i1.1198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric and magnetic energy densities as well as energy flux (Poynting vector) for radial variant vector beam focusing through a dielectric interface is analyzed numerically based on vector diffraction theory. The electric and magnetic energy densities are tailored by properly manipulating the radial as well as initial phases to generates novel focal patterns in the focal area. These peculiar properties may find applications in fields such as optical trapping, optical recording, magnetic recording, and magnetic resonance microscopy and semiconductor inspection. Full Text: PDF References\\n\\nS.N. Khonina, I. Golub, \\\"Optimization of focusing of linearly polarized light \\\", Opt. Lett. 36 352 (2011). CrossRef \\nV.V. Kotlyar, S.S. Stafeev, Y. Liu, L. O'Faolain, A. A. Kovalev, \\\"Analysis of the shape of a subwavelength focal spot for the linearly polarized light\\\", Appl. Opt. 52 330 (2013). CrossRef \\nS. Sen, M.A. Varshney, D. Varshney, \\\"Relativistic Propagation of Linearly/Circularly Polarized Laser Radiation in Plasmas\\\", ISRN Optics. 2013 1 (2013). CrossRef \\nM. Martínez-Corral, R. Martínez-Cuenca, I. Escobar, G. Saavedra, \\\"Reduction of focus size in tightly focused linearly polarized beams\\\", Appl. Phys. Lett. 85 4319 (2004) . CrossRef \\nJ. Lekner, \\\"Polarization of tightly focused laser beams\\\", Opt. A: Pure Appl. Opt. 5, 6 (2003). CrossRef \\nH. Guo, X. Weng, M. Jiang, Y. Zhao, G. Sui, Q. Hu, Y. Wang, S. Zhuang, \\\"Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters\\\", Opt.Express 21, 5363 (2013). CrossRef \\nC.-C. Sun, C.-K. Liu, \\\"Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation\\\", Opt. Lett. 28, 99 (2003). CrossRef \\nG.H. Yuan, S.B. Wei, X.-C. Yuan, \\\"Nondiffracting transversally polarized beam\\\", Opt. Lett. 36, 3479 (2011). CrossRef \\nP. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, J. Tian, \\\"Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces\\\", Opt. Lett. 40, 3229 (2015). CrossRef \\nZ. Chen, T. Zeng, B. Qian, \\\"Complete shaping of optical vector beams\\\", J. Ding, Opt. Express 23, 17701 (2015). CrossRef \\nZ. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, S. Wen, \\\"Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere\\\", Photon. Res. 5, 15 (2017). CrossRef \\nZ. Man, Z. Bai, S. Zhang, J. Li, X. Li, X. Ge, Y. Zhang, S. Fu, \\\"Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization\\\", J. Opt. Soc. Am. A 35, 1014 (2018). CrossRef \\nZ. Man, S. Fu, G. Wei, \\\"Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization\\\", J. Opt. Soc. Am. A 34, 1384 (2017). CrossRef \\nZ. Man et al, \\\"Optical cage generated by azimuthal- and radial-variant vector beams\\\", Appl. Opt. 57 (2018). CrossRef \\nS.S. Stafeev, V.V Kotlyar, A.G. Nalimov, E.S. Kozlova, \\\"The Non-Vortex Inverse Propagation of Energy in a Tightly Focused High-Order Cylindrical Vector Beam\\\", IEEE Photon. J., 11, 1 (2019). CrossRef \\nS.S. Stafeev, V.V. Kotlyar, \\\"Elongation of the area of energy backflow through the use of ring apertures\\\", Opt. Commun.450 (2019) 67-71. CrossRef \\nS.S. Stafeev, V.V. Kotlyar, A.G. Nalimov, \\\"Energy backflow in in a tightly focused high-order cylindrical vector beam\\\", Proc. SPIE 11025, 1102518 (2019). CrossRef \\nN.G. Orji, M. Badaroglu, B.M. Barnes, \\\"Metrology for the next generation of semiconductor devices\\\", Nat. Electron. 1, 532 (2018). CrossRef \\nP. Torok, P. Varga, G.R. Booker, \\\"Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I\\\", I, J. Opt. Soc. Am. A 12, 2136 (1995). CrossRef \\nP. Torok, P. Varga, Z. Laczik, G.R. Booker, \\\"Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation\\\", J. Opt. Soc. Am. A., 12, 325 (1995). CrossRef \\nZ. Zhou, L. Zhu, \\\"Tight focusing of high order axially symmetric polarized beams through a dielectric interface\\\", Optik, 124, 2219 (2013). CrossRef \\nJ. Shu, Z. Chen, J. Pu, Y. Liu \\\"Tight focusing of a double-ring-shaped, azimuthally polarized beam through a dielectric interface\\\", J. Opt. Soc. Am. A 31, 1180 (2014). CrossRef \\nK. Hu, Z. Chen, J. Pu., \\\"Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface\\\", Opt. Lett. 37, 3303 (2012). CrossRef \\nB. Richards, E. Wolf, \\\"Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system\\\", Proc. R. Soc. London A 253, 358 (1959). CrossRef \\n\\n \",\"PeriodicalId\":20055,\"journal\":{\"name\":\"Photonics Letters of Poland\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Letters of Poland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4302/plp.v15i1.1198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v15i1.1198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
基于矢量衍射理论,对径向变矢量光束通过介质界面聚焦时的电磁能密度和能量通量(坡印亭矢量)进行了数值分析。通过适当地控制径向和初始相位来定制电磁能密度,从而在焦点区域产生新的焦点图案。这些特殊的性质可以在诸如光捕获、光记录、磁记录、磁共振显微镜和半导体检测等领域找到应用。全文:PDFKhonina, I. Golub,“线偏振光聚焦的优化”,光学学报,36 352(2011)。[CrossRef]刘毅,刘毅,刘立军,“线偏振光的亚波长聚焦光斑形状分析”,光学学报,2014。Opt. 52 330(2013)。CrossRef S. Sen, M.A. Varshney, d.w arshney,“等离子体中线/圆偏振激光辐射的相对论传播”,光学学报,2013(1)。CrossRef M. Martínez-Corral, R. Martínez-Cuenca, I. Escobar, G. Saavedra,“紧聚焦线偏振光束聚焦尺寸的减小”,applied。理论物理。Lett. 85 4319(2004)。cross - ref J. Lekner,“紧密聚焦激光束的偏振”,光学学报(英文版)。选择5,6(2003)。CrossRef h .郭x翁,m .江y赵,g .隋问:胡,y,壮族,“紧聚焦高阶径向偏振光束的传输通过分域二进制阶段学生过滤器”,5363年Opt.Express 21日(2013年)。CrossRef c c。太阳,C.-K。刘,“基于偏振和相位调制的长聚焦深度的超小聚焦点”,光学学报,28,99(2003)。交叉参考袁光华,魏绍波,肖成。袁,“无衍射横向偏振光”,光学学报,36,3479(2011)。引用本文:于鹏,陈世生,李军,程华,李振华,刘伟,谢斌,刘志田,“利用等离子体超表面产生相位和线性极化任意空间变化的矢量光束”,光学学报,40,32(2015)。引用本文:陈振华,曾涛,钱斌,“光矢量光束的完全整形”,丁杰,光学学报,23,17701 (2015)CrossRef z刘,刘y、y客y . Liu w·舒h·罗,美国,“代任意向量涡旋光束hybrid-order庞加莱球”,光子。Res. 5,15(2017)。满忠,白志强,张生,李建军,李晓霞,葛晓霞,张勇,傅树生,“螺旋相位和圆柱对称偏振态结合的任意光场聚焦特性”,光学学报。点。农学通报,2014(5):481 - 481。引用本文:满忠,傅树生,魏国光,“基于线性偏振任意几何结构的紧密聚焦偏振光束的聚焦工程”,光学学报,2011。点。[j] .农业工程学报,2017,37(4)。CrossRef Z. Man et al .,“由方位和径向变矢量光束产生的光笼”,applied。选择57(2018)。[10]刘建军,刘建军,“高阶圆柱矢量光束中能量的非涡旋反向传播”,光子学报。[J] .浙江农业学报,2016,31(1)。CrossRef S.S. Stafeev, V.V. Kotlyar,“环形孔对能量回流面积的影响”,机械工程学报,45(2019):67-71。[10]李建军,李建军,李建军,“高阶圆柱矢量光束的能量回流”,物理学报,2001,11(6):1192 - 1192。CrossRef N.G. Orji, M. Badaroglu, B.M. Barnes,“下一代半导体器件的计量”,电子学报,1,532(2018)。P. Torok, P. Varga, G.R. Booker,“折射率不匹配材料之间的平面界面聚焦光的电磁衍射:电磁场的结构。”I”,I, J. Opt. Soc。点。A 12, 2136(1995)。[CrossRef] P. Torok, P. Varga, Z. Laczik, G.R. Booker,“折射率不匹配材料之间的平面界面聚焦光的电磁衍射:积分表示”,光学学报。点。文学,12,325(1995)。周志强,朱磊,“高阶轴对称偏振光束通过介质界面的紧密聚焦”,光学学报,24,2219(2013)。引用本文:舒建军,陈志强,濮建军,刘勇,“双环形偏振光通过介质界面的紧密聚焦”,光子学报。点。[j] .农业工程学报,2014,31(1)。[交叉参考]胡凯,陈志强,濮建军。,“通过介质界面聚焦混合偏振矢量光束产生超长光学针”,光学学报,37,3303(2012)。王晓明,“电磁衍射在光学系统中的应用”。非平面化系统中图像场的结构研究”,国立国立大学学报。伦敦A 253, 358(1959)。CrossRef
Generating novel focal patterns for radial variant vector beam focusing through a dielectric interface
Electric and magnetic energy densities as well as energy flux (Poynting vector) for radial variant vector beam focusing through a dielectric interface is analyzed numerically based on vector diffraction theory. The electric and magnetic energy densities are tailored by properly manipulating the radial as well as initial phases to generates novel focal patterns in the focal area. These peculiar properties may find applications in fields such as optical trapping, optical recording, magnetic recording, and magnetic resonance microscopy and semiconductor inspection. Full Text: PDF References
S.N. Khonina, I. Golub, "Optimization of focusing of linearly polarized light ", Opt. Lett. 36 352 (2011). CrossRef
V.V. Kotlyar, S.S. Stafeev, Y. Liu, L. O'Faolain, A. A. Kovalev, "Analysis of the shape of a subwavelength focal spot for the linearly polarized light", Appl. Opt. 52 330 (2013). CrossRef
S. Sen, M.A. Varshney, D. Varshney, "Relativistic Propagation of Linearly/Circularly Polarized Laser Radiation in Plasmas", ISRN Optics. 2013 1 (2013). CrossRef
M. Martínez-Corral, R. Martínez-Cuenca, I. Escobar, G. Saavedra, "Reduction of focus size in tightly focused linearly polarized beams", Appl. Phys. Lett. 85 4319 (2004) . CrossRef
J. Lekner, "Polarization of tightly focused laser beams", Opt. A: Pure Appl. Opt. 5, 6 (2003). CrossRef
H. Guo, X. Weng, M. Jiang, Y. Zhao, G. Sui, Q. Hu, Y. Wang, S. Zhuang, "Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters", Opt.Express 21, 5363 (2013). CrossRef
C.-C. Sun, C.-K. Liu, "Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation", Opt. Lett. 28, 99 (2003). CrossRef
G.H. Yuan, S.B. Wei, X.-C. Yuan, "Nondiffracting transversally polarized beam", Opt. Lett. 36, 3479 (2011). CrossRef
P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, J. Tian, "Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces", Opt. Lett. 40, 3229 (2015). CrossRef
Z. Chen, T. Zeng, B. Qian, "Complete shaping of optical vector beams", J. Ding, Opt. Express 23, 17701 (2015). CrossRef
Z. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, S. Wen, "Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere", Photon. Res. 5, 15 (2017). CrossRef
Z. Man, Z. Bai, S. Zhang, J. Li, X. Li, X. Ge, Y. Zhang, S. Fu, "Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization", J. Opt. Soc. Am. A 35, 1014 (2018). CrossRef
Z. Man, S. Fu, G. Wei, "Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization", J. Opt. Soc. Am. A 34, 1384 (2017). CrossRef
Z. Man et al, "Optical cage generated by azimuthal- and radial-variant vector beams", Appl. Opt. 57 (2018). CrossRef
S.S. Stafeev, V.V Kotlyar, A.G. Nalimov, E.S. Kozlova, "The Non-Vortex Inverse Propagation of Energy in a Tightly Focused High-Order Cylindrical Vector Beam", IEEE Photon. J., 11, 1 (2019). CrossRef
S.S. Stafeev, V.V. Kotlyar, "Elongation of the area of energy backflow through the use of ring apertures", Opt. Commun.450 (2019) 67-71. CrossRef
S.S. Stafeev, V.V. Kotlyar, A.G. Nalimov, "Energy backflow in in a tightly focused high-order cylindrical vector beam", Proc. SPIE 11025, 1102518 (2019). CrossRef
N.G. Orji, M. Badaroglu, B.M. Barnes, "Metrology for the next generation of semiconductor devices", Nat. Electron. 1, 532 (2018). CrossRef
P. Torok, P. Varga, G.R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I", I, J. Opt. Soc. Am. A 12, 2136 (1995). CrossRef
P. Torok, P. Varga, Z. Laczik, G.R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation", J. Opt. Soc. Am. A., 12, 325 (1995). CrossRef
Z. Zhou, L. Zhu, "Tight focusing of high order axially symmetric polarized beams through a dielectric interface", Optik, 124, 2219 (2013). CrossRef
J. Shu, Z. Chen, J. Pu, Y. Liu "Tight focusing of a double-ring-shaped, azimuthally polarized beam through a dielectric interface", J. Opt. Soc. Am. A 31, 1180 (2014). CrossRef
K. Hu, Z. Chen, J. Pu., "Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface", Opt. Lett. 37, 3303 (2012). CrossRef
B. Richards, E. Wolf, "Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system", Proc. R. Soc. London A 253, 358 (1959). CrossRef