{"title":"太阳辐射对小麦饲料膨化潜力的影响","authors":"D. Malinowski, W. E. Pinchak, D. Pitta, B. Min","doi":"10.5586/AA.1754","DOIUrl":null,"url":null,"abstract":"Frothy bloat is a serious digestive disorder in cattle (Bos taurus L.) grazing winter wheat (Triticum aestivum L.) pastures in the Southern Great Plains of the USA. Wheat plant metabolism may be one of the factors involved in bloat occurrence. In a series of experiments conducted during 2004–2007, we evaluated the effects of solar radiation intensity (ambient, 100% vs. reduced, 25%), a short-time (24 h vs. 48 h) exposure to solar radiation, and forage allowance (high, 18 kg vs. low, 6 kg DM/100 kg body weight) on seasonal concentration of phenolic compounds and foam strength (a measure of bloat potential) of wheat forage ‘Cutter’. Reduced solar radiation decreased total phenolic concentration and increased foam strength when compared to ambient solar radiation. Forage allowance interacted with solar radiation and short-term exposure treatments in determining phenolic concentrations; however, the effects were inconsistent during and among growing seasons. Concentration of phenolic compounds responded rapidly to sudden changes in weather patterns (passing cold fronts) that were usually associated with significant decrease in solar radiation intensity and temperature. Solar radiation intensity was positively correlated with total phenolic concentration and explained 62% to 72% of the variation in total phenolic concentration. Correlation between temperature and total phenolic concentration varied among growing seasons and explained 9–17% of the variation in total phenolic concentration. Results suggest that phenolic concentration in wheat forage is correlated with solar radiation. The decrease in phenolic concentration and resulting increase of bloat potential are especially pronounced during sudden changes in weather patterns during winter.","PeriodicalId":6907,"journal":{"name":"Acta Agrobotanica","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar radiation affects bloat potential of wheat forage\",\"authors\":\"D. Malinowski, W. E. Pinchak, D. Pitta, B. Min\",\"doi\":\"10.5586/AA.1754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frothy bloat is a serious digestive disorder in cattle (Bos taurus L.) grazing winter wheat (Triticum aestivum L.) pastures in the Southern Great Plains of the USA. Wheat plant metabolism may be one of the factors involved in bloat occurrence. In a series of experiments conducted during 2004–2007, we evaluated the effects of solar radiation intensity (ambient, 100% vs. reduced, 25%), a short-time (24 h vs. 48 h) exposure to solar radiation, and forage allowance (high, 18 kg vs. low, 6 kg DM/100 kg body weight) on seasonal concentration of phenolic compounds and foam strength (a measure of bloat potential) of wheat forage ‘Cutter’. Reduced solar radiation decreased total phenolic concentration and increased foam strength when compared to ambient solar radiation. Forage allowance interacted with solar radiation and short-term exposure treatments in determining phenolic concentrations; however, the effects were inconsistent during and among growing seasons. Concentration of phenolic compounds responded rapidly to sudden changes in weather patterns (passing cold fronts) that were usually associated with significant decrease in solar radiation intensity and temperature. Solar radiation intensity was positively correlated with total phenolic concentration and explained 62% to 72% of the variation in total phenolic concentration. Correlation between temperature and total phenolic concentration varied among growing seasons and explained 9–17% of the variation in total phenolic concentration. Results suggest that phenolic concentration in wheat forage is correlated with solar radiation. The decrease in phenolic concentration and resulting increase of bloat potential are especially pronounced during sudden changes in weather patterns during winter.\",\"PeriodicalId\":6907,\"journal\":{\"name\":\"Acta Agrobotanica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Agrobotanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5586/AA.1754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agrobotanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5586/AA.1754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Solar radiation affects bloat potential of wheat forage
Frothy bloat is a serious digestive disorder in cattle (Bos taurus L.) grazing winter wheat (Triticum aestivum L.) pastures in the Southern Great Plains of the USA. Wheat plant metabolism may be one of the factors involved in bloat occurrence. In a series of experiments conducted during 2004–2007, we evaluated the effects of solar radiation intensity (ambient, 100% vs. reduced, 25%), a short-time (24 h vs. 48 h) exposure to solar radiation, and forage allowance (high, 18 kg vs. low, 6 kg DM/100 kg body weight) on seasonal concentration of phenolic compounds and foam strength (a measure of bloat potential) of wheat forage ‘Cutter’. Reduced solar radiation decreased total phenolic concentration and increased foam strength when compared to ambient solar radiation. Forage allowance interacted with solar radiation and short-term exposure treatments in determining phenolic concentrations; however, the effects were inconsistent during and among growing seasons. Concentration of phenolic compounds responded rapidly to sudden changes in weather patterns (passing cold fronts) that were usually associated with significant decrease in solar radiation intensity and temperature. Solar radiation intensity was positively correlated with total phenolic concentration and explained 62% to 72% of the variation in total phenolic concentration. Correlation between temperature and total phenolic concentration varied among growing seasons and explained 9–17% of the variation in total phenolic concentration. Results suggest that phenolic concentration in wheat forage is correlated with solar radiation. The decrease in phenolic concentration and resulting increase of bloat potential are especially pronounced during sudden changes in weather patterns during winter.
Acta AgrobotanicaAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.90
自引率
25.00%
发文量
8
审稿时长
16 weeks
期刊介绍:
The Acta Agrobotanica publishes mainly significant, original research papers presenting the results new to the biology of cultivable or wild plants accompanying crops. The submissions dedicated particularly to flora and phytocenoses of anthropogenically transformed areas, bee pastures, nectariferous and polleniferous taxa, plant-pollinator relationships, urban and rural habitats for entomofauna, cultivated plants, weeds, aerobiology, plant pathogens and parasites are encouraged and accepted. Besides the original research papers, authors may submit short communications and reviews. The journal also publishes the invited papers in case of new developments in plant science. All submissions must be written in good English, which is solely a responsibility of the authors.