Najwan Abed Hasan, Azhar M. Kadim, Haider M. Jaber, Aseel B. Alnajjar, Mohammed Sahib Mahdi Altaei
{"title":"基于混沌方法的音频文件图像隐藏","authors":"Najwan Abed Hasan, Azhar M. Kadim, Haider M. Jaber, Aseel B. Alnajjar, Mohammed Sahib Mahdi Altaei","doi":"10.21533/pen.v11i3.3642","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient image hiding method that combines image encryption and chaotic mapping to introduce adaptive data hiding for improving the security and robustness of image data hiding in cover audio. The feasibility of using chaotic maps to hide encrypted image in the high frequency band of the audio is investigated. The proposed method was based on hiding the image data in the noisiest part of the audio, which is the high frequency band that was extracted by the zero crossing filter. Six types of digital images were used, each of size fit the length of used audio, this to facilitate the process of hiding them among the audio samples. The input image was encrypted by a one-time pad method, then its bits were hidden in the audio by the chaotic map. The process of retrieving the image from the audio was in the opposite way, where the image data was extracted from the high frequency band of the audio file, and then the extracted image was decrypted to produce the retrieved image. Four qualitative metrics were used to evaluate the hiding method in two paths: the first depends on comparing the retrieved image with the original image, while the second depends on comparing the audio containing the image data with the original audio once, and another time by comparing the cover audio with the original audio. The results of the quality metrics proved the efficiency of the proposed method, and it showed a slight and unnoticed effect between the research materials, which indicates the success of the hiding process and the validity of the research path.","PeriodicalId":37519,"journal":{"name":"Periodicals of Engineering and Natural Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image hiding in audio file using chaotic method\",\"authors\":\"Najwan Abed Hasan, Azhar M. Kadim, Haider M. Jaber, Aseel B. Alnajjar, Mohammed Sahib Mahdi Altaei\",\"doi\":\"10.21533/pen.v11i3.3642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient image hiding method that combines image encryption and chaotic mapping to introduce adaptive data hiding for improving the security and robustness of image data hiding in cover audio. The feasibility of using chaotic maps to hide encrypted image in the high frequency band of the audio is investigated. The proposed method was based on hiding the image data in the noisiest part of the audio, which is the high frequency band that was extracted by the zero crossing filter. Six types of digital images were used, each of size fit the length of used audio, this to facilitate the process of hiding them among the audio samples. The input image was encrypted by a one-time pad method, then its bits were hidden in the audio by the chaotic map. The process of retrieving the image from the audio was in the opposite way, where the image data was extracted from the high frequency band of the audio file, and then the extracted image was decrypted to produce the retrieved image. Four qualitative metrics were used to evaluate the hiding method in two paths: the first depends on comparing the retrieved image with the original image, while the second depends on comparing the audio containing the image data with the original audio once, and another time by comparing the cover audio with the original audio. The results of the quality metrics proved the efficiency of the proposed method, and it showed a slight and unnoticed effect between the research materials, which indicates the success of the hiding process and the validity of the research path.\",\"PeriodicalId\":37519,\"journal\":{\"name\":\"Periodicals of Engineering and Natural Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodicals of Engineering and Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21533/pen.v11i3.3642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodicals of Engineering and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21533/pen.v11i3.3642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
In this paper, we propose an efficient image hiding method that combines image encryption and chaotic mapping to introduce adaptive data hiding for improving the security and robustness of image data hiding in cover audio. The feasibility of using chaotic maps to hide encrypted image in the high frequency band of the audio is investigated. The proposed method was based on hiding the image data in the noisiest part of the audio, which is the high frequency band that was extracted by the zero crossing filter. Six types of digital images were used, each of size fit the length of used audio, this to facilitate the process of hiding them among the audio samples. The input image was encrypted by a one-time pad method, then its bits were hidden in the audio by the chaotic map. The process of retrieving the image from the audio was in the opposite way, where the image data was extracted from the high frequency band of the audio file, and then the extracted image was decrypted to produce the retrieved image. Four qualitative metrics were used to evaluate the hiding method in two paths: the first depends on comparing the retrieved image with the original image, while the second depends on comparing the audio containing the image data with the original audio once, and another time by comparing the cover audio with the original audio. The results of the quality metrics proved the efficiency of the proposed method, and it showed a slight and unnoticed effect between the research materials, which indicates the success of the hiding process and the validity of the research path.