E. V. Pugacheva, S. Ya. Zhuk, R. A. Kochetkov, B. S. Seplyarskii, V. N. Borshch
{"title":"CO2加氢制甲烷的SHS及Ni/TiC催化剂的研究","authors":"E. V. Pugacheva, S. Ya. Zhuk, R. A. Kochetkov, B. S. Seplyarskii, V. N. Borshch","doi":"10.3103/S1061386222040082","DOIUrl":null,"url":null,"abstract":"<p>Ni/TiC catalysts were produced by SHS from granular Ti + C + Ni mixtures and leaching in NaOH solution followed by stabilization with H<sub>2</sub>O<sub>2</sub> solution of intermetallic precursors prepared by SHS from TiC + (Ni + Al) mixtures. Prepared granular and powder catalysts were characterized by XRD, SEM, EDS, and BET method. The catalytic activity of catalysts was determined in the temperature range of 150–400°С using the CO<sub>2</sub> + H<sub>2</sub> mixtures with different Н<sub>2</sub> concentration. It was found that catalyst containing 10 wt % Ni leached from precursor with Ni : Al = 1 : 2 possesses the highest hydrogenating activity at 350°С and 20 vol % H<sub>2</sub>.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"230 - 235"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SHS and Study of Ni/TiC Catalysts for CO2 Hydrogenation to Methane\",\"authors\":\"E. V. Pugacheva, S. Ya. Zhuk, R. A. Kochetkov, B. S. Seplyarskii, V. N. Borshch\",\"doi\":\"10.3103/S1061386222040082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ni/TiC catalysts were produced by SHS from granular Ti + C + Ni mixtures and leaching in NaOH solution followed by stabilization with H<sub>2</sub>O<sub>2</sub> solution of intermetallic precursors prepared by SHS from TiC + (Ni + Al) mixtures. Prepared granular and powder catalysts were characterized by XRD, SEM, EDS, and BET method. The catalytic activity of catalysts was determined in the temperature range of 150–400°С using the CO<sub>2</sub> + H<sub>2</sub> mixtures with different Н<sub>2</sub> concentration. It was found that catalyst containing 10 wt % Ni leached from precursor with Ni : Al = 1 : 2 possesses the highest hydrogenating activity at 350°С and 20 vol % H<sub>2</sub>.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"31 4\",\"pages\":\"230 - 235\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386222040082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386222040082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
SHS and Study of Ni/TiC Catalysts for CO2 Hydrogenation to Methane
Ni/TiC catalysts were produced by SHS from granular Ti + C + Ni mixtures and leaching in NaOH solution followed by stabilization with H2O2 solution of intermetallic precursors prepared by SHS from TiC + (Ni + Al) mixtures. Prepared granular and powder catalysts were characterized by XRD, SEM, EDS, and BET method. The catalytic activity of catalysts was determined in the temperature range of 150–400°С using the CO2 + H2 mixtures with different Н2 concentration. It was found that catalyst containing 10 wt % Ni leached from precursor with Ni : Al = 1 : 2 possesses the highest hydrogenating activity at 350°С and 20 vol % H2.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.