具有治愈率的生存数据的双变量Basu-Dhar几何模型

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2018-10-14 DOI:10.1285/I20705948V11N2P655
E. Martinez, J. Achcar, T. R. Icuma
{"title":"具有治愈率的生存数据的双变量Basu-Dhar几何模型","authors":"E. Martinez, J. Achcar, T. R. Icuma","doi":"10.1285/I20705948V11N2P655","DOIUrl":null,"url":null,"abstract":"Under a context of survival lifetime analysis, we introduce in this paper Bayesian and maximum likelihood approaches for the bivariate Basu-Dhar geometric model in the presence of covariates and a cure fraction. This distribution is useful to model bivariate discrete lifetime data. In the Bayesian estimation, posterior summaries of interest were obtained using standard Markov Chain Monte Carlo methods in the OpenBUGS software. Maximum likelihood estimates for the parameters of interest were computed using the \\textquotedblleft maxLik\" package of the R software. Illustrations of the proposed approaches are given for two real data sets.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"11 1","pages":"655-673"},"PeriodicalIF":0.6000,"publicationDate":"2018-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V11N2P655","citationCount":"4","resultStr":"{\"title\":\"Bivariate Basu-Dhar geometric model for survival data with a cure fraction\",\"authors\":\"E. Martinez, J. Achcar, T. R. Icuma\",\"doi\":\"10.1285/I20705948V11N2P655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under a context of survival lifetime analysis, we introduce in this paper Bayesian and maximum likelihood approaches for the bivariate Basu-Dhar geometric model in the presence of covariates and a cure fraction. This distribution is useful to model bivariate discrete lifetime data. In the Bayesian estimation, posterior summaries of interest were obtained using standard Markov Chain Monte Carlo methods in the OpenBUGS software. Maximum likelihood estimates for the parameters of interest were computed using the \\\\textquotedblleft maxLik\\\" package of the R software. Illustrations of the proposed approaches are given for two real data sets.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"11 1\",\"pages\":\"655-673\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1285/I20705948V11N2P655\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V11N2P655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V11N2P655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

在生存寿命分析的背景下,我们引入了存在协变量和治愈分数的二元Basu-Dhar几何模型的贝叶斯和最大似然方法。这种分布对二元离散寿命数据的建模是有用的。在贝叶斯估计中,使用OpenBUGS软件中的标准马尔可夫链蒙特卡罗方法获得感兴趣的后验摘要。使用R软件的\textquotedblleft maxLik”包计算感兴趣参数的最大似然估计。给出了两个实际数据集的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bivariate Basu-Dhar geometric model for survival data with a cure fraction
Under a context of survival lifetime analysis, we introduce in this paper Bayesian and maximum likelihood approaches for the bivariate Basu-Dhar geometric model in the presence of covariates and a cure fraction. This distribution is useful to model bivariate discrete lifetime data. In the Bayesian estimation, posterior summaries of interest were obtained using standard Markov Chain Monte Carlo methods in the OpenBUGS software. Maximum likelihood estimates for the parameters of interest were computed using the \textquotedblleft maxLik" package of the R software. Illustrations of the proposed approaches are given for two real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1