微纤维复合材料在化学工程中的应用综述

IF 4.9 3区 工程技术 Q1 ENGINEERING, CHEMICAL Reviews in Chemical Engineering Pub Date : 2021-07-26 DOI:10.1515/revce-2020-0109
Yi Yang, Huiqi Zhu, Lulu Bao, Xuhui Xu
{"title":"微纤维复合材料在化学工程中的应用综述","authors":"Yi Yang, Huiqi Zhu, Lulu Bao, Xuhui Xu","doi":"10.1515/revce-2020-0109","DOIUrl":null,"url":null,"abstract":"Abstract Microfibrous composites (MCs) are novel materials with unique structures and excellent functional properties, showing great potential in industrial applications. The investigation of the physicochemical properties of MCs is significant for accommodating the rapid development of high-efficiency chemical engineering industries. In this review, the characteristics, synthesis and applications of different types of previously reported MCs are discussed according to the constituent fibres, including polymers, metals and nonmetals. Among the different types of MCs, polymer MCs have a facile synthesis process and adjustable fibre composition, making them suitable for many complex situations. The high thermal and electrical conductivity of metal MCs enables their application in strong exothermic, endothermic and electrochemical reactions. Nonmetallic MCs are usually stable and corrosion resistant when reducing and oxidizing environments. The disadvantages of MCs, such as complicated synthesis processes compared to those of particles or powders, high cost, insufficient thorough study, and unsatisfactory regeneration effects, are also summarized. As a result, a more systematic investigation of MCs remains necessary. Despite the advantages and great application potential of microfibrous composites, much effort remains necessary to advance them to the industrial level in the chemical engineering industry.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical review on microfibrous composites for applications in chemical engineering\",\"authors\":\"Yi Yang, Huiqi Zhu, Lulu Bao, Xuhui Xu\",\"doi\":\"10.1515/revce-2020-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Microfibrous composites (MCs) are novel materials with unique structures and excellent functional properties, showing great potential in industrial applications. The investigation of the physicochemical properties of MCs is significant for accommodating the rapid development of high-efficiency chemical engineering industries. In this review, the characteristics, synthesis and applications of different types of previously reported MCs are discussed according to the constituent fibres, including polymers, metals and nonmetals. Among the different types of MCs, polymer MCs have a facile synthesis process and adjustable fibre composition, making them suitable for many complex situations. The high thermal and electrical conductivity of metal MCs enables their application in strong exothermic, endothermic and electrochemical reactions. Nonmetallic MCs are usually stable and corrosion resistant when reducing and oxidizing environments. The disadvantages of MCs, such as complicated synthesis processes compared to those of particles or powders, high cost, insufficient thorough study, and unsatisfactory regeneration effects, are also summarized. As a result, a more systematic investigation of MCs remains necessary. Despite the advantages and great application potential of microfibrous composites, much effort remains necessary to advance them to the industrial level in the chemical engineering industry.\",\"PeriodicalId\":54485,\"journal\":{\"name\":\"Reviews in Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/revce-2020-0109\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2020-0109","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

微纤维复合材料是一种结构独特、功能性能优异的新型材料,具有广阔的工业应用前景。研究高分子材料的理化性质对适应高效化工工业的快速发展具有重要意义。本文根据其组成纤维,包括聚合物、金属和非金属,综述了不同类型高分子材料的特点、合成方法和应用。在不同类型的高分子材料中,聚合物高分子材料的合成工艺简单,纤维成分可调,适用于许多复杂的场合。金属高分子材料的高导热性和高导电性使其能够应用于强放热、吸热和电化学反应中。非金属MCs在还原和氧化环境中通常是稳定和耐腐蚀的。综述了复合材料与颗粒或粉末相比合成工艺复杂、成本高、研究不够深入、再生效果不理想等缺点。因此,对mc进行更系统的调查仍然是必要的。尽管微纤维复合材料具有诸多优点和巨大的应用潜力,但在化工工业中,要使其达到工业化水平还需要付出很多努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Critical review on microfibrous composites for applications in chemical engineering
Abstract Microfibrous composites (MCs) are novel materials with unique structures and excellent functional properties, showing great potential in industrial applications. The investigation of the physicochemical properties of MCs is significant for accommodating the rapid development of high-efficiency chemical engineering industries. In this review, the characteristics, synthesis and applications of different types of previously reported MCs are discussed according to the constituent fibres, including polymers, metals and nonmetals. Among the different types of MCs, polymer MCs have a facile synthesis process and adjustable fibre composition, making them suitable for many complex situations. The high thermal and electrical conductivity of metal MCs enables their application in strong exothermic, endothermic and electrochemical reactions. Nonmetallic MCs are usually stable and corrosion resistant when reducing and oxidizing environments. The disadvantages of MCs, such as complicated synthesis processes compared to those of particles or powders, high cost, insufficient thorough study, and unsatisfactory regeneration effects, are also summarized. As a result, a more systematic investigation of MCs remains necessary. Despite the advantages and great application potential of microfibrous composites, much effort remains necessary to advance them to the industrial level in the chemical engineering industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Chemical Engineering
Reviews in Chemical Engineering 工程技术-工程:化工
CiteScore
12.30
自引率
0.00%
发文量
37
审稿时长
6 months
期刊介绍: Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.
期刊最新文献
Lithium–sulfur batteries beyond lithium-ion counterparts: reasonable substituting challenges, current research focus, binding critical role, and cathode designing A review of confined impinging jet reactor (CIJR) with a perspective of mRNA-LNP vaccine production Metal nanoparticles loaded polyurethane nano-composites and their catalytic/antimicrobial applications: a critical review Analysis of the state of the art technologies for the utilization and processing of associated petroleum gas into valuable chemical products A decade development of lipase catalysed synthesis of acylglycerols using reactors: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1