藻类、水葫芦和水莴苣对模拟废水中镍、铅和锰的植物修复

S. Alhaji, S. Umar, S. Abdullahi, Shehu Kasimu, Salisu Aliyu
{"title":"藻类、水葫芦和水莴苣对模拟废水中镍、铅和锰的植物修复","authors":"S. Alhaji, S. Umar, S. Abdullahi, Shehu Kasimu, Salisu Aliyu","doi":"10.11648/j.ijmpem.20200502.12","DOIUrl":null,"url":null,"abstract":"The increase in industrial and artisanal mining and mineral processing activities has led to a surge in the quantity of hazardous materials, typically heavy metals that are released into the environment. These hazard materials, when discharge in water bodies, poses serious risk to humans, animals and environment. Phytoremediation is one of the cost effective methods use in the removal of these pollutants from environment. Several plants have been investigated for their phytoremediating potentials. In this paper, the phytoremediation potential of algae, water hyacinth and water lettuce for the removal of Ni, Pb, and Mn was demonstrated. Plants of equal size were grown in aqueous medium and supplemented with different concentration (1.0 mg/dm3, 3.0 mg/dm3 and 5.0 mg/dm3) of multi component metal solution for 15 consecutive days. All the plants revealed a very good accumulation potential, with the accumulation of metals shown to increase with an increase in the initial concentration of the metal solution. At all levels, the plants accumulated the metals more in the root than in shoot except for Mn in water hyacinth. The result showed that water hyacinth was able to accumulate Pb better, while water lettuce showed more preference for Ni and Mn. All the three plants can be used in remediating waste water. Hence, water hyacinth, water lettuce and algae are a promising biomass for phytoremediation.","PeriodicalId":43710,"journal":{"name":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","volume":"5 1","pages":"30"},"PeriodicalIF":0.9000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Phytoremediation of Nickel, Lead and Manganese in Simulated Waste Water Using Algae, Water Hyacint and Water Lettuce\",\"authors\":\"S. Alhaji, S. Umar, S. Abdullahi, Shehu Kasimu, Salisu Aliyu\",\"doi\":\"10.11648/j.ijmpem.20200502.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in industrial and artisanal mining and mineral processing activities has led to a surge in the quantity of hazardous materials, typically heavy metals that are released into the environment. These hazard materials, when discharge in water bodies, poses serious risk to humans, animals and environment. Phytoremediation is one of the cost effective methods use in the removal of these pollutants from environment. Several plants have been investigated for their phytoremediating potentials. In this paper, the phytoremediation potential of algae, water hyacinth and water lettuce for the removal of Ni, Pb, and Mn was demonstrated. Plants of equal size were grown in aqueous medium and supplemented with different concentration (1.0 mg/dm3, 3.0 mg/dm3 and 5.0 mg/dm3) of multi component metal solution for 15 consecutive days. All the plants revealed a very good accumulation potential, with the accumulation of metals shown to increase with an increase in the initial concentration of the metal solution. At all levels, the plants accumulated the metals more in the root than in shoot except for Mn in water hyacinth. The result showed that water hyacinth was able to accumulate Pb better, while water lettuce showed more preference for Ni and Mn. All the three plants can be used in remediating waste water. Hence, water hyacinth, water lettuce and algae are a promising biomass for phytoremediation.\",\"PeriodicalId\":43710,\"journal\":{\"name\":\"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy\",\"volume\":\"5 1\",\"pages\":\"30\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.ijmpem.20200502.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ijmpem.20200502.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 2

摘要

工业和手工采矿和矿物加工活动的增加导致释放到环境中的有害物质,特别是重金属的数量激增。这些有害物质排放到水体中,对人类、动物和环境造成严重危害。植物修复是去除环境中这些污染物的一种经济有效的方法。研究了几种植物的植物修复潜力。本文对水藻、水葫芦和水莴苣在去除Ni、Pb和Mn方面的植物修复潜力进行了论证。等量植株在不同浓度(1.0 mg/dm3、3.0 mg/dm3和5.0 mg/dm3)的多组分金属溶液中生长,连续15天。所有植物均表现出很好的积累潜力,随着金属溶液初始浓度的增加,金属的积累量也随之增加。在各水平上,除水葫芦中的锰外,植物根中金属的积累量均大于地上部。结果表明,水葫芦对Pb的积累能力较强,而水莴苣对Ni和Mn的积累能力较强。这三种装置均可用于废水的治理。因此,水葫芦、水莴苣和水藻是一种很有前途的植物修复生物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phytoremediation of Nickel, Lead and Manganese in Simulated Waste Water Using Algae, Water Hyacint and Water Lettuce
The increase in industrial and artisanal mining and mineral processing activities has led to a surge in the quantity of hazardous materials, typically heavy metals that are released into the environment. These hazard materials, when discharge in water bodies, poses serious risk to humans, animals and environment. Phytoremediation is one of the cost effective methods use in the removal of these pollutants from environment. Several plants have been investigated for their phytoremediating potentials. In this paper, the phytoremediation potential of algae, water hyacinth and water lettuce for the removal of Ni, Pb, and Mn was demonstrated. Plants of equal size were grown in aqueous medium and supplemented with different concentration (1.0 mg/dm3, 3.0 mg/dm3 and 5.0 mg/dm3) of multi component metal solution for 15 consecutive days. All the plants revealed a very good accumulation potential, with the accumulation of metals shown to increase with an increase in the initial concentration of the metal solution. At all levels, the plants accumulated the metals more in the root than in shoot except for Mn in water hyacinth. The result showed that water hyacinth was able to accumulate Pb better, while water lettuce showed more preference for Ni and Mn. All the three plants can be used in remediating waste water. Hence, water hyacinth, water lettuce and algae are a promising biomass for phytoremediation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
6
期刊最新文献
Dissolution of gold in the presence of copper ion and diethylenetriamine (DETA) Adsorption of tannic acid as depressant in the flotation separation of fluorite and bastnaesite Demonstration of dry magnetic separation to upgrade the Mn:Fe ratio of a ferromanganese ore sample A mathematical model of a twin-shaft parallel flow regenerative lime kiln Beneficiation of a Nigerian lepidolite ore by sulfuric acid leaching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1