Michel Thiel, Nadia Benaiche, Manon Martin, Sébastien Franceschini, Robin Van Oirbeek, Bernadette Govaerts
{"title":"limpca:一个基于ASCA/APCA系列方法的高维设计数据线性建模的R软件包","authors":"Michel Thiel, Nadia Benaiche, Manon Martin, Sébastien Franceschini, Robin Van Oirbeek, Bernadette Govaerts","doi":"10.1002/cem.3482","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Many modern analytical methods are used to analyze samples issued from an experimental design, for example, in medical, biological, chemical, or agronomic fields. Those methods generate most of the time, highly multivariate data like spectra or images, where the number of variables (descriptor responses) tends to be much larger than the number of experimental units. Therefore, multivariate statistical tools are necessary to identify variables that are consistently affected by experimental factors. In this context, two recent methods combining ANOVA and PCA, namely, ASCA (ANOVA-Simultaneous Component Analysis) and APCA (ANOVA-Principal Component Analysis), were developed. They provide powerful visualization tools for multivariate structures in the space of each effect of the statistical model linked to the experimental design. Their main limitation is that they produce biased estimators of the factor effects when the design of experiment is unbalanced. This article presents the R package <span>limpca</span> (for linear models with principal component effects analysis) that implements ASCA+ and APCA+, an enhanced version of ASCA and APCA methods based on several principles from the theory of general linear models (GLM). In this paper, the methodology is reviewed, the package structure and functions are presented, and a metabolomics data set is used to clearly demonstrate the potential of ASCA+ and APCA+ methods to highlight true biomarkers corresponding to effects of interest in unbalanced designs.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"limpca: An R package for the linear modeling of high-dimensional designed data based on ASCA/APCA family of methods\",\"authors\":\"Michel Thiel, Nadia Benaiche, Manon Martin, Sébastien Franceschini, Robin Van Oirbeek, Bernadette Govaerts\",\"doi\":\"10.1002/cem.3482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Many modern analytical methods are used to analyze samples issued from an experimental design, for example, in medical, biological, chemical, or agronomic fields. Those methods generate most of the time, highly multivariate data like spectra or images, where the number of variables (descriptor responses) tends to be much larger than the number of experimental units. Therefore, multivariate statistical tools are necessary to identify variables that are consistently affected by experimental factors. In this context, two recent methods combining ANOVA and PCA, namely, ASCA (ANOVA-Simultaneous Component Analysis) and APCA (ANOVA-Principal Component Analysis), were developed. They provide powerful visualization tools for multivariate structures in the space of each effect of the statistical model linked to the experimental design. Their main limitation is that they produce biased estimators of the factor effects when the design of experiment is unbalanced. This article presents the R package <span>limpca</span> (for linear models with principal component effects analysis) that implements ASCA+ and APCA+, an enhanced version of ASCA and APCA methods based on several principles from the theory of general linear models (GLM). In this paper, the methodology is reviewed, the package structure and functions are presented, and a metabolomics data set is used to clearly demonstrate the potential of ASCA+ and APCA+ methods to highlight true biomarkers corresponding to effects of interest in unbalanced designs.</p>\\n </div>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3482\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3482","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
limpca: An R package for the linear modeling of high-dimensional designed data based on ASCA/APCA family of methods
Many modern analytical methods are used to analyze samples issued from an experimental design, for example, in medical, biological, chemical, or agronomic fields. Those methods generate most of the time, highly multivariate data like spectra or images, where the number of variables (descriptor responses) tends to be much larger than the number of experimental units. Therefore, multivariate statistical tools are necessary to identify variables that are consistently affected by experimental factors. In this context, two recent methods combining ANOVA and PCA, namely, ASCA (ANOVA-Simultaneous Component Analysis) and APCA (ANOVA-Principal Component Analysis), were developed. They provide powerful visualization tools for multivariate structures in the space of each effect of the statistical model linked to the experimental design. Their main limitation is that they produce biased estimators of the factor effects when the design of experiment is unbalanced. This article presents the R package limpca (for linear models with principal component effects analysis) that implements ASCA+ and APCA+, an enhanced version of ASCA and APCA methods based on several principles from the theory of general linear models (GLM). In this paper, the methodology is reviewed, the package structure and functions are presented, and a metabolomics data set is used to clearly demonstrate the potential of ASCA+ and APCA+ methods to highlight true biomarkers corresponding to effects of interest in unbalanced designs.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.