玉米淀粉颗粒对水蒸气吸附动力学的微分模型

IF 2 4区 农林科学 Q2 AGRONOMY International Agrophysics Pub Date : 2023-06-01 DOI:10.31545/intagr/163569
A. Ocieczek, R. Kostek, H. Toczek
{"title":"玉米淀粉颗粒对水蒸气吸附动力学的微分模型","authors":"A. Ocieczek, R. Kostek, H. Toczek","doi":"10.31545/intagr/163569","DOIUrl":null,"url":null,"abstract":". An understanding of the kinetics of water vapour sorption allows for the prediction of the stability of food in the management of transport and storage processes, it also facilitates the optimization of drying processes, and the rationalization of the methods of studying sorption statics. The present study aimed to determine an appropriate model of the kinetics of water vapour sorption on the surface of maize starch particles, which could prove useful in describing kinetic curves as well as allowing for the determination of the time required to reach a state of equilibrium. Experimental data was obtained through the continuous measurement of the increase in sample mass. The model was developed by matching the simulation results to the experimental results. Its parameters were identified by minimizing the mean square error between the time courses of the simulation and the experimental results, which allowed for the avoidance of problems concerning data processing and the loss of information. Two methods were deployed in order to minimize the occurrence of error: multi-start and gradient ones. The proposed model provided an appropriate description of the kinetics of water vapour adsorption by maize starch, regardless of the mass of the samples used and the physical state of their particles. The time required for a state of equilibrium to be attained was significantly shorter than the usually assumed period of 30 days.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential model of the kinetics of water vapour adsorption on maize starch particles\",\"authors\":\"A. Ocieczek, R. Kostek, H. Toczek\",\"doi\":\"10.31545/intagr/163569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". An understanding of the kinetics of water vapour sorption allows for the prediction of the stability of food in the management of transport and storage processes, it also facilitates the optimization of drying processes, and the rationalization of the methods of studying sorption statics. The present study aimed to determine an appropriate model of the kinetics of water vapour sorption on the surface of maize starch particles, which could prove useful in describing kinetic curves as well as allowing for the determination of the time required to reach a state of equilibrium. Experimental data was obtained through the continuous measurement of the increase in sample mass. The model was developed by matching the simulation results to the experimental results. Its parameters were identified by minimizing the mean square error between the time courses of the simulation and the experimental results, which allowed for the avoidance of problems concerning data processing and the loss of information. Two methods were deployed in order to minimize the occurrence of error: multi-start and gradient ones. The proposed model provided an appropriate description of the kinetics of water vapour adsorption by maize starch, regardless of the mass of the samples used and the physical state of their particles. The time required for a state of equilibrium to be attained was significantly shorter than the usually assumed period of 30 days.\",\"PeriodicalId\":13959,\"journal\":{\"name\":\"International Agrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Agrophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.31545/intagr/163569\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/163569","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

. 对水蒸气吸附动力学的理解可以在运输和储存过程的管理中预测食品的稳定性,也有助于干燥过程的优化,以及研究吸附静力学的方法的合理化。本研究旨在确定玉米淀粉颗粒表面水蒸气吸附动力学的适当模型,该模型可用于描述动力学曲线,并允许确定达到平衡状态所需的时间。实验数据是通过连续测量样品质量的增加而得到的。将仿真结果与实验结果进行匹配,建立了模型。通过最小化模拟时间过程与实验结果之间的均方误差来确定其参数,从而避免了有关数据处理和信息丢失的问题。为了减少误差的发生,采用了两种方法:多起点法和梯度法。所提出的模型提供了玉米淀粉对水蒸气吸附动力学的适当描述,而不考虑所用样品的质量及其颗粒的物理状态。达到平衡状态所需的时间比通常假定的30天要短得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential model of the kinetics of water vapour adsorption on maize starch particles
. An understanding of the kinetics of water vapour sorption allows for the prediction of the stability of food in the management of transport and storage processes, it also facilitates the optimization of drying processes, and the rationalization of the methods of studying sorption statics. The present study aimed to determine an appropriate model of the kinetics of water vapour sorption on the surface of maize starch particles, which could prove useful in describing kinetic curves as well as allowing for the determination of the time required to reach a state of equilibrium. Experimental data was obtained through the continuous measurement of the increase in sample mass. The model was developed by matching the simulation results to the experimental results. Its parameters were identified by minimizing the mean square error between the time courses of the simulation and the experimental results, which allowed for the avoidance of problems concerning data processing and the loss of information. Two methods were deployed in order to minimize the occurrence of error: multi-start and gradient ones. The proposed model provided an appropriate description of the kinetics of water vapour adsorption by maize starch, regardless of the mass of the samples used and the physical state of their particles. The time required for a state of equilibrium to be attained was significantly shorter than the usually assumed period of 30 days.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Agrophysics
International Agrophysics 农林科学-农艺学
CiteScore
3.60
自引率
9.10%
发文量
27
审稿时长
3 months
期刊介绍: The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed. Particularly the journal is focused on the following areas: implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment, soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture, postharvest management and processing of agricultural and horticultural products in relation to food quality and safety, mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing, advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments. Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used. All manuscripts are initially checked on topic suitability and linguistic quality.
期刊最新文献
Machine learning-based soil aggregation assessment under four scenarios in northwestern Iran Evaluation of the changes in Bekker's parameters and their use in determining the rolling resistance Study of wheat (Triticum aestivum L.) seed rehydration observed by the Dent generalized model and 1H-NMR relaxometry Investigation of vegetation dynamics with a focus on agricultural land cover and its relation with meteorological parameters based on the remote sensing techniques: a case study of the Gavkhoni watershed Vis/NIR and FTIR spectroscopy supported by machine learning techniques to distinguish pure from impure Iranian rice varieties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1