检测多波束回声测深仪数据尖峰的稳健方法

IF 0.5 Q3 Earth and Planetary Sciences Boletim De Ciencias Geodesicas Pub Date : 2020-02-13 DOI:10.1590/s1982-21702019000300014
Í. O. Ferreira, Afonso de Paula dos Santos, Júlio César de Oliveira, N. G. Medeiros, Paulo César Emiliano
{"title":"检测多波束回声测深仪数据尖峰的稳健方法","authors":"Í. O. Ferreira, Afonso de Paula dos Santos, Júlio César de Oliveira, N. G. Medeiros, Paulo César Emiliano","doi":"10.1590/s1982-21702019000300014","DOIUrl":null,"url":null,"abstract":"Currently, during the operation in shallow waters, scanning systems, such as multibeam systems, are capable of collecting thousands of points in a short time, promoting a greater coverage of the submerged bottom, with consequent increase in the detection capacity of objects. Although there has been an improvement in the accuracy of the depths collected, traditional processing, that is, manual, is still required. However, mainly due to the increased mass of data collected, manual processing has become extremely time-consuming and subjective, especially in the detection and elimination of spikes. Several algorithms are used to perform this task, but most of them are based on statistical assumptions hardly met and/or verified, such as spatial independence and normality. In this sense, the goal of this study is to present the SODA (Spatial Outlier Detection Algorithm) methodology, a new method for detection of spikes designed to treat bathymetric data collected through swath bathymetry systems. From computational simulation, promising results were obtained. SODA, in some cases, was capable to identify even 90% of spikes inserted on simulation, showing that the methodology is efficient and substantial to the bathymetric data treatment.","PeriodicalId":55347,"journal":{"name":"Boletim De Ciencias Geodesicas","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ROBUST METHODOLOGY FOR DETECTION OF SPIKES IN MULTIBEAM ECHO SOUNDER DATA\",\"authors\":\"Í. O. Ferreira, Afonso de Paula dos Santos, Júlio César de Oliveira, N. G. Medeiros, Paulo César Emiliano\",\"doi\":\"10.1590/s1982-21702019000300014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, during the operation in shallow waters, scanning systems, such as multibeam systems, are capable of collecting thousands of points in a short time, promoting a greater coverage of the submerged bottom, with consequent increase in the detection capacity of objects. Although there has been an improvement in the accuracy of the depths collected, traditional processing, that is, manual, is still required. However, mainly due to the increased mass of data collected, manual processing has become extremely time-consuming and subjective, especially in the detection and elimination of spikes. Several algorithms are used to perform this task, but most of them are based on statistical assumptions hardly met and/or verified, such as spatial independence and normality. In this sense, the goal of this study is to present the SODA (Spatial Outlier Detection Algorithm) methodology, a new method for detection of spikes designed to treat bathymetric data collected through swath bathymetry systems. From computational simulation, promising results were obtained. SODA, in some cases, was capable to identify even 90% of spikes inserted on simulation, showing that the methodology is efficient and substantial to the bathymetric data treatment.\",\"PeriodicalId\":55347,\"journal\":{\"name\":\"Boletim De Ciencias Geodesicas\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim De Ciencias Geodesicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/s1982-21702019000300014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim De Ciencias Geodesicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/s1982-21702019000300014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 4

摘要

目前,在浅水作业期间,扫描系统,如多波束系统,能够在短时间内收集数千个点,从而提高对海底的覆盖率,从而提高物体的探测能力。尽管采集深度的精度有所提高,但仍然需要传统的处理,即手动处理。然而,主要由于收集的数据量增加,手动处理变得极其耗时和主观,尤其是在检测和消除尖峰方面。有几种算法被用来执行这项任务,但大多数算法都是基于几乎没有得到满足和/或验证的统计假设,例如空间独立性和正态性。从这个意义上说,本研究的目标是提出SODA(空间异常值检测算法)方法,这是一种检测尖峰的新方法,旨在处理通过条带测深系统收集的测深数据。通过计算模拟,获得了有希望的结果。在某些情况下,SODA甚至能够识别模拟中插入的90%的尖峰,这表明该方法对测深数据处理是有效和重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ROBUST METHODOLOGY FOR DETECTION OF SPIKES IN MULTIBEAM ECHO SOUNDER DATA
Currently, during the operation in shallow waters, scanning systems, such as multibeam systems, are capable of collecting thousands of points in a short time, promoting a greater coverage of the submerged bottom, with consequent increase in the detection capacity of objects. Although there has been an improvement in the accuracy of the depths collected, traditional processing, that is, manual, is still required. However, mainly due to the increased mass of data collected, manual processing has become extremely time-consuming and subjective, especially in the detection and elimination of spikes. Several algorithms are used to perform this task, but most of them are based on statistical assumptions hardly met and/or verified, such as spatial independence and normality. In this sense, the goal of this study is to present the SODA (Spatial Outlier Detection Algorithm) methodology, a new method for detection of spikes designed to treat bathymetric data collected through swath bathymetry systems. From computational simulation, promising results were obtained. SODA, in some cases, was capable to identify even 90% of spikes inserted on simulation, showing that the methodology is efficient and substantial to the bathymetric data treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boletim De Ciencias Geodesicas
Boletim De Ciencias Geodesicas Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
1.70
自引率
20.00%
发文量
10
审稿时长
3 months
期刊介绍: The Boletim de Ciências Geodésicas publishes original papers in the area of Geodetic Sciences and correlated ones (Geodesy, Photogrammetry and Remote Sensing, Cartography and Geographic Information Systems). Submitted articles must be unpublished, and should not be under consideration for publication in any other journal. Previous publication of the paper in conference proceedings would not violate the originality requirements. Articles must be written preferably in English language.
期刊最新文献
Spatial and seasonal dynamics of rainfall in subtropical Brazil Exploring spatio-temporal patterns of OpenStreetMap (OSM) contributions in heterogeneous urban areas Harmonizing income classes from 2000 and 2010 Brazilian censuses Study of the geometry influence of the support points in coordonates transformation: application from WGS84 to NS59 datum Speckle reduction for Sentinel-1A SAR images in the Semi-arid caatinga region, Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1