短玄武岩纤维对聚乳酸复合材料耐久性、力学性能和热性能的影响

Q2 Materials Science Polymers from Renewable Resources Pub Date : 2019-08-07 DOI:10.1177/2041247919863631
Lu Han, Fangwu Ma, Shixian Chen, Yongfeng Pu
{"title":"短玄武岩纤维对聚乳酸复合材料耐久性、力学性能和热性能的影响","authors":"Lu Han, Fangwu Ma, Shixian Chen, Yongfeng Pu","doi":"10.1177/2041247919863631","DOIUrl":null,"url":null,"abstract":"The effect of basalt fiber (BF) content on the properties of BF-reinforced polylactic acid (PLA) composites was investigated. Composites with 10, 20, 30, 40, 50, and 60 wt% BF were fabricated. The results revealed that (1) the mechanical properties improved with increasing BF content. The maximum tensile strength and modulus of the composites (i.e. 140 and 5050 MPa, respectively) occurred at a BF content of 50%. The maximum flexural strength, that is, 159.5 MPa was two times larger than that of the pure PLA and was obtained at a BF content of 40%. However, the mechanical properties deteriorated at BF contents >50%. (2) BF can stop storage modulus loss and are effective in improving the crystallinity, as revealed by dynamic mechanical analysis and differential scanning calorimetry measurements. The crystallinity improved from 34.6% to 54.6% with BF addition. (3) After the accelerated aging test, pure PLA was too weak for testing. However, high values of the tensile modulus (i.e. 60% that of the nonaged samples) were maintained by the BF-reinforced PLA. This resulted possibly from the high crystallinity of the PLA composites. Therefore, suitable amounts of BF as reinforcements can yield improvements in the performance of PLA composites.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2041247919863631","citationCount":"11","resultStr":"{\"title\":\"Effect of short basalt fibers on durability, mechanical properties, and thermal properties of polylactic acid composites\",\"authors\":\"Lu Han, Fangwu Ma, Shixian Chen, Yongfeng Pu\",\"doi\":\"10.1177/2041247919863631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of basalt fiber (BF) content on the properties of BF-reinforced polylactic acid (PLA) composites was investigated. Composites with 10, 20, 30, 40, 50, and 60 wt% BF were fabricated. The results revealed that (1) the mechanical properties improved with increasing BF content. The maximum tensile strength and modulus of the composites (i.e. 140 and 5050 MPa, respectively) occurred at a BF content of 50%. The maximum flexural strength, that is, 159.5 MPa was two times larger than that of the pure PLA and was obtained at a BF content of 40%. However, the mechanical properties deteriorated at BF contents >50%. (2) BF can stop storage modulus loss and are effective in improving the crystallinity, as revealed by dynamic mechanical analysis and differential scanning calorimetry measurements. The crystallinity improved from 34.6% to 54.6% with BF addition. (3) After the accelerated aging test, pure PLA was too weak for testing. However, high values of the tensile modulus (i.e. 60% that of the nonaged samples) were maintained by the BF-reinforced PLA. This resulted possibly from the high crystallinity of the PLA composites. Therefore, suitable amounts of BF as reinforcements can yield improvements in the performance of PLA composites.\",\"PeriodicalId\":20353,\"journal\":{\"name\":\"Polymers from Renewable Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2041247919863631\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers from Renewable Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2041247919863631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2041247919863631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 11

摘要

研究了玄武岩纤维(BF)含量对BF增强聚乳酸(PLA)复合材料性能的影响。制备了具有10wt%、20wt%、30wt%、40wt%、50wt%和60wt%BF的复合材料。结果表明:(1)随着BF含量的增加,力学性能得到改善。复合材料的最大拉伸强度和模量(即分别为140和5050MPa)发生在BF含量为50%时。最大弯曲强度,即159.5MPa,是纯PLA的两倍,并且在BF含量为40%时获得。然而,当BF含量大于50%时,力学性能恶化。(2) 动态力学分析和差示扫描量热法测量表明,BF可以阻止储能模量的损失,并有效地提高结晶度。BF的加入使结晶度由34.6%提高到54.6%。(3) 在加速老化试验后,纯PLA太弱,无法进行试验。然而,BF增强的PLA保持了高的拉伸模量值(即未老化样品的60%)。这可能是由于PLA复合材料的高结晶度。因此,适量的BF作为增强材料可以提高PLA复合材料的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of short basalt fibers on durability, mechanical properties, and thermal properties of polylactic acid composites
The effect of basalt fiber (BF) content on the properties of BF-reinforced polylactic acid (PLA) composites was investigated. Composites with 10, 20, 30, 40, 50, and 60 wt% BF were fabricated. The results revealed that (1) the mechanical properties improved with increasing BF content. The maximum tensile strength and modulus of the composites (i.e. 140 and 5050 MPa, respectively) occurred at a BF content of 50%. The maximum flexural strength, that is, 159.5 MPa was two times larger than that of the pure PLA and was obtained at a BF content of 40%. However, the mechanical properties deteriorated at BF contents >50%. (2) BF can stop storage modulus loss and are effective in improving the crystallinity, as revealed by dynamic mechanical analysis and differential scanning calorimetry measurements. The crystallinity improved from 34.6% to 54.6% with BF addition. (3) After the accelerated aging test, pure PLA was too weak for testing. However, high values of the tensile modulus (i.e. 60% that of the nonaged samples) were maintained by the BF-reinforced PLA. This resulted possibly from the high crystallinity of the PLA composites. Therefore, suitable amounts of BF as reinforcements can yield improvements in the performance of PLA composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers from Renewable Resources
Polymers from Renewable Resources Materials Science-Polymers and Plastics
CiteScore
3.50
自引率
0.00%
发文量
15
期刊介绍: Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.
期刊最新文献
Polymers from renewable resources: Drug delivery platforms for transdermal delivery Lactic acid-facilitated surface modification of nanocellulose extracted from Borassus flabellifer leaves Recent advances in enhancing thermoelectric performance of polymeric materials Exploring the performance of bio-based PLA/PHB blends: A comprehensive analysis Production of nanocomposite films based on low density polyethylene/surface activated nanoperlite for modified atmosphere packaging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1