Hui Xiao, X. Guo, Fangzhou Chen, Weiwei Zhang, Hao Liu, Ze Chen, Jiahao Liu
{"title":"基于TDR无损检测方法的SiP器件故障定位技术","authors":"Hui Xiao, X. Guo, Fangzhou Chen, Weiwei Zhang, Hao Liu, Ze Chen, Jiahao Liu","doi":"10.1108/mi-09-2022-0168","DOIUrl":null,"url":null,"abstract":"\nPurpose\nTraditional nondestructive failure localization techniques are increasingly difficult to meet the requirements of high density and integration of system in package (SIP) devices in terms of resolution and accuracy. Time domain reflection (TDR) is recognized as a novel positioning analysis technology gradually being used in the electronics industry because of the good compatibility, high accuracy and high efficiency. However, there are limited reports focus on the application of TDR technology to SiP devices.\n\n\nDesign/methodology/approach\nIn this study, the authors used the TDR technique to locate the failure of SiP devices, and the results showed that the TDR technique can accurately locate the cracking of internal solder joints of SiP devices.\n\n\nFindings\nThe measured transmission rate of electromagnetic wave signal was 9.56 × 107 m/s in the experimental SiP devices. In addition, the TDR technique successfully located the failure point, which was mainly caused by the cracking of the solder joint at the edge of the SiP device after 1,500 thermal cycles.\n\n\nOriginality/value\nTDR technology is creatively applied to SiP device failure location, and quantitative analysis is realized.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A failure location technology for SiP devices based on TDR nondestructive testing method\",\"authors\":\"Hui Xiao, X. Guo, Fangzhou Chen, Weiwei Zhang, Hao Liu, Ze Chen, Jiahao Liu\",\"doi\":\"10.1108/mi-09-2022-0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nTraditional nondestructive failure localization techniques are increasingly difficult to meet the requirements of high density and integration of system in package (SIP) devices in terms of resolution and accuracy. Time domain reflection (TDR) is recognized as a novel positioning analysis technology gradually being used in the electronics industry because of the good compatibility, high accuracy and high efficiency. However, there are limited reports focus on the application of TDR technology to SiP devices.\\n\\n\\nDesign/methodology/approach\\nIn this study, the authors used the TDR technique to locate the failure of SiP devices, and the results showed that the TDR technique can accurately locate the cracking of internal solder joints of SiP devices.\\n\\n\\nFindings\\nThe measured transmission rate of electromagnetic wave signal was 9.56 × 107 m/s in the experimental SiP devices. In addition, the TDR technique successfully located the failure point, which was mainly caused by the cracking of the solder joint at the edge of the SiP device after 1,500 thermal cycles.\\n\\n\\nOriginality/value\\nTDR technology is creatively applied to SiP device failure location, and quantitative analysis is realized.\\n\",\"PeriodicalId\":49817,\"journal\":{\"name\":\"Microelectronics International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/mi-09-2022-0168\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-09-2022-0168","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A failure location technology for SiP devices based on TDR nondestructive testing method
Purpose
Traditional nondestructive failure localization techniques are increasingly difficult to meet the requirements of high density and integration of system in package (SIP) devices in terms of resolution and accuracy. Time domain reflection (TDR) is recognized as a novel positioning analysis technology gradually being used in the electronics industry because of the good compatibility, high accuracy and high efficiency. However, there are limited reports focus on the application of TDR technology to SiP devices.
Design/methodology/approach
In this study, the authors used the TDR technique to locate the failure of SiP devices, and the results showed that the TDR technique can accurately locate the cracking of internal solder joints of SiP devices.
Findings
The measured transmission rate of electromagnetic wave signal was 9.56 × 107 m/s in the experimental SiP devices. In addition, the TDR technique successfully located the failure point, which was mainly caused by the cracking of the solder joint at the edge of the SiP device after 1,500 thermal cycles.
Originality/value
TDR technology is creatively applied to SiP device failure location, and quantitative analysis is realized.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.