Bi2TeO6-nH2O(0 ≤ n ≤ ({\raise0.5ex\hbox{$\scriptstyle 2$})的晶体结构和研究\kern-0.1em/kern-0.15em(lower0.25ex\hbox{$scriptstyle 3$}}):天然和合成芒硝

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Physics and Chemistry of Minerals Pub Date : 2022-06-09 DOI:10.1007/s00269-022-01198-2
Owen P. Missen, Stuart J. Mills, Michael S. Rumsey, Matthias Weil, Werner Artner, John Spratt, Jens Najorka
{"title":"Bi2TeO6-nH2O(0 ≤ n ≤ ({\\raise0.5ex\\hbox{$\\scriptstyle 2$})的晶体结构和研究\\kern-0.1em/kern-0.15em(lower0.25ex\\hbox{$scriptstyle 3$}}):天然和合成芒硝","authors":"Owen P. Missen,&nbsp;Stuart J. Mills,&nbsp;Michael S. Rumsey,&nbsp;Matthias Weil,&nbsp;Werner Artner,&nbsp;John Spratt,&nbsp;Jens Najorka","doi":"10.1007/s00269-022-01198-2","DOIUrl":null,"url":null,"abstract":"<div><p>The crystal structure of montanite has been determined using single-crystal X-ray diffraction on a synthetic sample, supported by powder X-ray diffraction (PXRD), electron microprobe analysis (EPMA) and thermogravimetric analyses (TGA). Montanite was first described in 1868 as Bi<sub>2</sub>TeO<sub>6</sub>·<i>n</i>H<sub>2</sub>O (<i>n</i> = 1 or 2). The determination of the crystal structure of synthetic montanite (refined composition Bi<sub>2</sub>TeO<sub>6</sub>·0.22H<sub>2</sub>O) has led to the reassignment of the formula to Bi<sub>2</sub>TeO<sub>6</sub>·<i>n</i>H<sub>2</sub>O where 0 ≤ <i>n</i> ≤ <span>\\({\\raise0.5ex\\hbox{$\\scriptstyle 2$} \\kern-0.1em/\\kern-0.15em \\lower0.25ex\\hbox{$\\scriptstyle 3$}}\\)</span> rather than the commonly reported Bi<sub>2</sub>TeO<sub>6</sub>·2H<sub>2</sub>O. This change has been accepted by the IMA–CNMNC, Proposal 22-A. The PXRD pattern simulated from the crystal structure of synthetic montanite is a satisfactory match for PXRD scans collected on both historical and recent natural samples, showing their equivalence. Two specimens attributed to the original discoverer of montanite (Frederick A. Genth) from the cotype localities (Highland Mining District, Montana and David Beck’s mine, North Carolina, USA) have been designated as neotypes. Montanite crystallises in space group <i>P</i><span>\\(\\overline{6 }\\)</span>, with the unit-cell parameters <i>a</i> = 9.1195(14) Å, <i>c</i> = 5.5694(8) Å, <i>V</i> = 401.13(14) Å<sup>3</sup>, and three formula units in the unit cell. The crystal structure of montanite is formed from a framework of BiO<sub><i>n</i></sub> and TeO<sub>6</sub> polyhedra. Half of the Bi<sup>3+</sup> and all of the Te<sup>6+</sup> cations are coordinated by six oxygen atoms in trigonal-prismatic arrangements (the first example of this configuration reported for Te<sup>6+</sup>), while the remaining Bi<sup>3+</sup> cations are coordinated by seven O sites. The H<sub>2</sub>O groups in montanite are structurally incorporated into the network of cavities formed by the three-dimensional framework, with other cavity space occupied by the stereoactive 6<i>s</i><sup>2</sup> lone pair of Bi<sup>3+</sup> cations. While evidence for a supercell was observed in synthetic montanite, the subcell refinement of montanite adequately indexes all reflections in the PXRD patterns observed in all natural montanite samples analysed in this study, verifying the identity of montanite as a mineral.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01198-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Crystal structure and investigation of Bi2TeO6·nH2O (0 ≤ n ≤ \\\\({\\\\raise0.5ex\\\\hbox{$\\\\scriptstyle 2$} \\\\kern-0.1em/\\\\kern-0.15em \\\\lower0.25ex\\\\hbox{$\\\\scriptstyle 3$}}\\\\)): natural and synthetic montanite\",\"authors\":\"Owen P. Missen,&nbsp;Stuart J. Mills,&nbsp;Michael S. Rumsey,&nbsp;Matthias Weil,&nbsp;Werner Artner,&nbsp;John Spratt,&nbsp;Jens Najorka\",\"doi\":\"10.1007/s00269-022-01198-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The crystal structure of montanite has been determined using single-crystal X-ray diffraction on a synthetic sample, supported by powder X-ray diffraction (PXRD), electron microprobe analysis (EPMA) and thermogravimetric analyses (TGA). Montanite was first described in 1868 as Bi<sub>2</sub>TeO<sub>6</sub>·<i>n</i>H<sub>2</sub>O (<i>n</i> = 1 or 2). The determination of the crystal structure of synthetic montanite (refined composition Bi<sub>2</sub>TeO<sub>6</sub>·0.22H<sub>2</sub>O) has led to the reassignment of the formula to Bi<sub>2</sub>TeO<sub>6</sub>·<i>n</i>H<sub>2</sub>O where 0 ≤ <i>n</i> ≤ <span>\\\\({\\\\raise0.5ex\\\\hbox{$\\\\scriptstyle 2$} \\\\kern-0.1em/\\\\kern-0.15em \\\\lower0.25ex\\\\hbox{$\\\\scriptstyle 3$}}\\\\)</span> rather than the commonly reported Bi<sub>2</sub>TeO<sub>6</sub>·2H<sub>2</sub>O. This change has been accepted by the IMA–CNMNC, Proposal 22-A. The PXRD pattern simulated from the crystal structure of synthetic montanite is a satisfactory match for PXRD scans collected on both historical and recent natural samples, showing their equivalence. Two specimens attributed to the original discoverer of montanite (Frederick A. Genth) from the cotype localities (Highland Mining District, Montana and David Beck’s mine, North Carolina, USA) have been designated as neotypes. Montanite crystallises in space group <i>P</i><span>\\\\(\\\\overline{6 }\\\\)</span>, with the unit-cell parameters <i>a</i> = 9.1195(14) Å, <i>c</i> = 5.5694(8) Å, <i>V</i> = 401.13(14) Å<sup>3</sup>, and three formula units in the unit cell. The crystal structure of montanite is formed from a framework of BiO<sub><i>n</i></sub> and TeO<sub>6</sub> polyhedra. Half of the Bi<sup>3+</sup> and all of the Te<sup>6+</sup> cations are coordinated by six oxygen atoms in trigonal-prismatic arrangements (the first example of this configuration reported for Te<sup>6+</sup>), while the remaining Bi<sup>3+</sup> cations are coordinated by seven O sites. The H<sub>2</sub>O groups in montanite are structurally incorporated into the network of cavities formed by the three-dimensional framework, with other cavity space occupied by the stereoactive 6<i>s</i><sup>2</sup> lone pair of Bi<sup>3+</sup> cations. While evidence for a supercell was observed in synthetic montanite, the subcell refinement of montanite adequately indexes all reflections in the PXRD patterns observed in all natural montanite samples analysed in this study, verifying the identity of montanite as a mineral.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00269-022-01198-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-022-01198-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01198-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在粉末 X 射线衍射 (PXRD)、电子微探针分析 (EPMA) 和热重分析 (TGA) 的支持下,利用合成样品的单晶 X 射线衍射测定了蒙钽铁矿的晶体结构。蒙脱石于 1868 年首次被描述为 Bi2TeO6-nH2O(n = 1 或 2)。合成蒙脱石(精制成分为 Bi2TeO6-0.22H2O)晶体结构的确定导致其公式被重新调整为 Bi2TeO6-nH2O,其中 0 ≤ n ≤ ({\raise0.5ex\hbox{$scriptstyle 2$})。\而不是通常报告的 Bi2TeO6-2H2O。这一改动已被 IMA-CNMNC 接受,即建议 22-A。根据合成蒙脱石的晶体结构模拟出的 PXRD 图样与采集到的历史样本和最新天然样本的 PXRD 扫描结果相吻合,显示出它们之间的等效性。来自原型产地(美国蒙大拿州高地矿区和北卡罗来纳州戴维-贝克矿区)的蒙榍石原发现者(Frederick A. Genth)的两个标本被指定为新原型。蒙脱石在空间群 P\(\overline{6 }\) 中结晶,单位晶胞参数 a = 9.1195(14) Å,c = 5.5694(8) Å,V = 401.13(14) Å3,单位晶胞中有三个公式单元。蒙脱石的晶体结构由 BiOn 和 TeO6 多面体框架构成。一半的 Bi3+ 和所有的 Te6+ 阳离子由六个氧原子以三棱四角排列方式配位(这是首次报道 Te6+ 以这种构型配位的实例),而其余的 Bi3+ 阳离子则由七个 O 位配位。蒙脱石中的 H2O 基团在结构上与三维框架形成的空腔网络结合在一起,其他空腔空间则被 Bi3+ 阳离子的立体活性 6s2 孤对所占据。虽然在合成蒙脱石中观察到了超晶胞的证据,但在本研究分析的所有天然蒙脱石样品中观察到的 PXRD 图样中,蒙脱石的亚晶胞细化充分反映了所有反射,从而验证了蒙脱石作为一种矿物的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystal structure and investigation of Bi2TeO6·nH2O (0 ≤ n ≤ \({\raise0.5ex\hbox{$\scriptstyle 2$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 3$}}\)): natural and synthetic montanite

The crystal structure of montanite has been determined using single-crystal X-ray diffraction on a synthetic sample, supported by powder X-ray diffraction (PXRD), electron microprobe analysis (EPMA) and thermogravimetric analyses (TGA). Montanite was first described in 1868 as Bi2TeO6·nH2O (n = 1 or 2). The determination of the crystal structure of synthetic montanite (refined composition Bi2TeO6·0.22H2O) has led to the reassignment of the formula to Bi2TeO6·nH2O where 0 ≤ n ≤ \({\raise0.5ex\hbox{$\scriptstyle 2$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 3$}}\) rather than the commonly reported Bi2TeO6·2H2O. This change has been accepted by the IMA–CNMNC, Proposal 22-A. The PXRD pattern simulated from the crystal structure of synthetic montanite is a satisfactory match for PXRD scans collected on both historical and recent natural samples, showing their equivalence. Two specimens attributed to the original discoverer of montanite (Frederick A. Genth) from the cotype localities (Highland Mining District, Montana and David Beck’s mine, North Carolina, USA) have been designated as neotypes. Montanite crystallises in space group P\(\overline{6 }\), with the unit-cell parameters a = 9.1195(14) Å, c = 5.5694(8) Å, V = 401.13(14) Å3, and three formula units in the unit cell. The crystal structure of montanite is formed from a framework of BiOn and TeO6 polyhedra. Half of the Bi3+ and all of the Te6+ cations are coordinated by six oxygen atoms in trigonal-prismatic arrangements (the first example of this configuration reported for Te6+), while the remaining Bi3+ cations are coordinated by seven O sites. The H2O groups in montanite are structurally incorporated into the network of cavities formed by the three-dimensional framework, with other cavity space occupied by the stereoactive 6s2 lone pair of Bi3+ cations. While evidence for a supercell was observed in synthetic montanite, the subcell refinement of montanite adequately indexes all reflections in the PXRD patterns observed in all natural montanite samples analysed in this study, verifying the identity of montanite as a mineral.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
期刊最新文献
Interaction of platinum with antimony-bearing compounds in NaF fluids at 800 °C and 200 MPA High-pressure synthesis of rhenium carbide Re3C under megabar compression High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems Thermodynamics of the α-FeOOH (goethite)-ScOOH solid solution High pressure behavior of K-cymrite (KAlSi3O8·H2O) crystal structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1