{"title":"早期太阳系中的短命核素:丰度、起源和应用","authors":"A. Davis","doi":"10.1146/annurev-nucl-010722-074615","DOIUrl":null,"url":null,"abstract":"Several short-lived radionuclides (SLRs) were present in the first few million years of Solar System history. Their abundances have profound impact on the timing of stellar nucleosynthesis events prior to Solar System formation, chronology of events in the early Solar System, early solar activity, heating of early-formed planetesimals, and chronology of planet formation. Isotopic analytical techniques have undergone dramatic improvements in the past decade, leading to tighter constraints on the levels of SLRs in the early Solar System and on the use of these nuclides for detailed chronological studies. This review emphasizes the abundances of SLRs when the Solar System formed and how we know them, and briefly discusses the origins of these nuclides and applications in planetary science. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications\",\"authors\":\"A. Davis\",\"doi\":\"10.1146/annurev-nucl-010722-074615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several short-lived radionuclides (SLRs) were present in the first few million years of Solar System history. Their abundances have profound impact on the timing of stellar nucleosynthesis events prior to Solar System formation, chronology of events in the early Solar System, early solar activity, heating of early-formed planetesimals, and chronology of planet formation. Isotopic analytical techniques have undergone dramatic improvements in the past decade, leading to tighter constraints on the levels of SLRs in the early Solar System and on the use of these nuclides for detailed chronological studies. This review emphasizes the abundances of SLRs when the Solar System formed and how we know them, and briefly discusses the origins of these nuclides and applications in planetary science. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8090,\"journal\":{\"name\":\"Annual Review of Nuclear and Particle Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Nuclear and Particle Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-010722-074615\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-010722-074615","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications
Several short-lived radionuclides (SLRs) were present in the first few million years of Solar System history. Their abundances have profound impact on the timing of stellar nucleosynthesis events prior to Solar System formation, chronology of events in the early Solar System, early solar activity, heating of early-formed planetesimals, and chronology of planet formation. Isotopic analytical techniques have undergone dramatic improvements in the past decade, leading to tighter constraints on the levels of SLRs in the early Solar System and on the use of these nuclides for detailed chronological studies. This review emphasizes the abundances of SLRs when the Solar System formed and how we know them, and briefly discusses the origins of these nuclides and applications in planetary science. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.