Razika Beldi, Nadjet Aimene, B. Barhouchi, B. Zouchoune, R. Boulcina
{"title":"高效、绿色一锅合成抗菌剂:2-氨基-4-芳基-5-氧-4- h -铬-3-碳腈的功能化DPTS催化剂的理论计算","authors":"Razika Beldi, Nadjet Aimene, B. Barhouchi, B. Zouchoune, R. Boulcina","doi":"10.2174/2213337210666230616094312","DOIUrl":null,"url":null,"abstract":"\n\nIn the search for a new and effective synthetic approach to biologically chromene-derived compounds, a series of 2-amino-7, 7-dimethyl-5-oxo-4H-tetrahydrochromene-3-carbonitrile derivatives (4a-i) were synthesized. This synthesis involved the use of 4-(dimethylamino)pyridiniump-toluenesulfonate (DPTS) as a catalyst in an aqueous medium. Additionally, the relative stability between isomers was investigated using DFT/B3LYP calculations.\n\n\n\nThe target compounds were synthesized through a multicomponent reaction of 5,5-dimethyl-1,3-cyclohexanedione (dimedone) 1, various arylaldehydes (2a-i), and malononitrile 3 in water and were recrystallized in ethanol. The reaction was promoted using DPTS, which is a low-toxic, inexpensive, commercially available, and easy-to-handle catalyst.\n\n\n\nThe catalytic activity of DPTS was investigated in a condensation reaction conducted in an aqueous medium at room temperature. All synthesized compounds displayed considerable antimicrobial activities against human pathogenic bacteria and fungi.\n\n\n\nThe developed synthetic protocol demonstrates energy efficiency, shorter reaction time, environmental friendliness, high product yields with purity, and scalability to gram-scale synthesis. DPTS proved to be a valuable contribution to the field of organocatalysis. The synthesized compounds were screened for in vitro antimicrobial activities, demonstrating varying potency against the microbial strains. Compound 4h exhibited the most potent activity with a zone of inhibition (ZOI) measuring 15 mm against E.coli. This was followed by compounds 4b, 4d, 4f, and 4g, which displayed a ZOI of 12 mm. Furthermore, the antifungal results revealed promising anticandidal activity for compounds 4b, 4e, and 4h, with a lower minimum inhibitory concentration (MIC) of 0.031 mg/ml. In addition, molecular electrostatic potential (MEP) mapping, reactivity indices such as electronegativity, electrophilic index, softness, and hardness, as well as frontier molecular orbitals (HOMO-LUMO), were used to provide further evidence regarding the stability and reactivity of the synthesized products.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient, Green One-Pot Synthesis of Antimicrobial Agents: Functionalized DPTS Catalyst for the Preparation of 2-Amino-4-Aryl-5-Oxo-4H-Chromene-3-Carbonitriles, with Theoretical Calculations\",\"authors\":\"Razika Beldi, Nadjet Aimene, B. Barhouchi, B. Zouchoune, R. Boulcina\",\"doi\":\"10.2174/2213337210666230616094312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nIn the search for a new and effective synthetic approach to biologically chromene-derived compounds, a series of 2-amino-7, 7-dimethyl-5-oxo-4H-tetrahydrochromene-3-carbonitrile derivatives (4a-i) were synthesized. This synthesis involved the use of 4-(dimethylamino)pyridiniump-toluenesulfonate (DPTS) as a catalyst in an aqueous medium. Additionally, the relative stability between isomers was investigated using DFT/B3LYP calculations.\\n\\n\\n\\nThe target compounds were synthesized through a multicomponent reaction of 5,5-dimethyl-1,3-cyclohexanedione (dimedone) 1, various arylaldehydes (2a-i), and malononitrile 3 in water and were recrystallized in ethanol. The reaction was promoted using DPTS, which is a low-toxic, inexpensive, commercially available, and easy-to-handle catalyst.\\n\\n\\n\\nThe catalytic activity of DPTS was investigated in a condensation reaction conducted in an aqueous medium at room temperature. All synthesized compounds displayed considerable antimicrobial activities against human pathogenic bacteria and fungi.\\n\\n\\n\\nThe developed synthetic protocol demonstrates energy efficiency, shorter reaction time, environmental friendliness, high product yields with purity, and scalability to gram-scale synthesis. DPTS proved to be a valuable contribution to the field of organocatalysis. The synthesized compounds were screened for in vitro antimicrobial activities, demonstrating varying potency against the microbial strains. Compound 4h exhibited the most potent activity with a zone of inhibition (ZOI) measuring 15 mm against E.coli. This was followed by compounds 4b, 4d, 4f, and 4g, which displayed a ZOI of 12 mm. Furthermore, the antifungal results revealed promising anticandidal activity for compounds 4b, 4e, and 4h, with a lower minimum inhibitory concentration (MIC) of 0.031 mg/ml. In addition, molecular electrostatic potential (MEP) mapping, reactivity indices such as electronegativity, electrophilic index, softness, and hardness, as well as frontier molecular orbitals (HOMO-LUMO), were used to provide further evidence regarding the stability and reactivity of the synthesized products.\\n\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213337210666230616094312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337210666230616094312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Efficient, Green One-Pot Synthesis of Antimicrobial Agents: Functionalized DPTS Catalyst for the Preparation of 2-Amino-4-Aryl-5-Oxo-4H-Chromene-3-Carbonitriles, with Theoretical Calculations
In the search for a new and effective synthetic approach to biologically chromene-derived compounds, a series of 2-amino-7, 7-dimethyl-5-oxo-4H-tetrahydrochromene-3-carbonitrile derivatives (4a-i) were synthesized. This synthesis involved the use of 4-(dimethylamino)pyridiniump-toluenesulfonate (DPTS) as a catalyst in an aqueous medium. Additionally, the relative stability between isomers was investigated using DFT/B3LYP calculations.
The target compounds were synthesized through a multicomponent reaction of 5,5-dimethyl-1,3-cyclohexanedione (dimedone) 1, various arylaldehydes (2a-i), and malononitrile 3 in water and were recrystallized in ethanol. The reaction was promoted using DPTS, which is a low-toxic, inexpensive, commercially available, and easy-to-handle catalyst.
The catalytic activity of DPTS was investigated in a condensation reaction conducted in an aqueous medium at room temperature. All synthesized compounds displayed considerable antimicrobial activities against human pathogenic bacteria and fungi.
The developed synthetic protocol demonstrates energy efficiency, shorter reaction time, environmental friendliness, high product yields with purity, and scalability to gram-scale synthesis. DPTS proved to be a valuable contribution to the field of organocatalysis. The synthesized compounds were screened for in vitro antimicrobial activities, demonstrating varying potency against the microbial strains. Compound 4h exhibited the most potent activity with a zone of inhibition (ZOI) measuring 15 mm against E.coli. This was followed by compounds 4b, 4d, 4f, and 4g, which displayed a ZOI of 12 mm. Furthermore, the antifungal results revealed promising anticandidal activity for compounds 4b, 4e, and 4h, with a lower minimum inhibitory concentration (MIC) of 0.031 mg/ml. In addition, molecular electrostatic potential (MEP) mapping, reactivity indices such as electronegativity, electrophilic index, softness, and hardness, as well as frontier molecular orbitals (HOMO-LUMO), were used to provide further evidence regarding the stability and reactivity of the synthesized products.
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.