{"title":"重新审查Marinov等人关于第112号元素发现的主张","authors":"S. R. Hashemi-Nezhad, R. Brandt, W. Westmeier","doi":"10.4236/wjnst.2018.84013","DOIUrl":null,"url":null,"abstract":"Marinov et al. have detected spontaneous fission events in sources separated from tungsten targets irradiated with 24 GeV protons. These fission events could not be attributed to actinides or to any other known isotope. Marinov et al. propose that fission events are due to production of element 112 (Eka-Hg) in the tungsten target. We have addressed Marinov’s claim with a new analysis of their data and modern theoretical model calculations of possible interactions. Using data available in the literature the spontaneous fission half-life of the Eka-Hg was estimated to be ~74 days. This is dramatically longer than the half-life obtained for 283112Cn, produced in the fusion of energetic 48Ca ions with 238U. Monte Carlo calculations show that enough Sr isotopes are produced in the tungsten target to make the production of element 112 via fusion of Sr and W feasible; however, if such fusion was possible it had to be deep sub-barrier fusion.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reexamination of the Claim of Marinov et al. on Discovery of Element 112\",\"authors\":\"S. R. Hashemi-Nezhad, R. Brandt, W. Westmeier\",\"doi\":\"10.4236/wjnst.2018.84013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marinov et al. have detected spontaneous fission events in sources separated from tungsten targets irradiated with 24 GeV protons. These fission events could not be attributed to actinides or to any other known isotope. Marinov et al. propose that fission events are due to production of element 112 (Eka-Hg) in the tungsten target. We have addressed Marinov’s claim with a new analysis of their data and modern theoretical model calculations of possible interactions. Using data available in the literature the spontaneous fission half-life of the Eka-Hg was estimated to be ~74 days. This is dramatically longer than the half-life obtained for 283112Cn, produced in the fusion of energetic 48Ca ions with 238U. Monte Carlo calculations show that enough Sr isotopes are produced in the tungsten target to make the production of element 112 via fusion of Sr and W feasible; however, if such fusion was possible it had to be deep sub-barrier fusion.\",\"PeriodicalId\":61566,\"journal\":{\"name\":\"核科学与技术国际期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"核科学与技术国际期刊(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/wjnst.2018.84013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"核科学与技术国际期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/wjnst.2018.84013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reexamination of the Claim of Marinov et al. on Discovery of Element 112
Marinov et al. have detected spontaneous fission events in sources separated from tungsten targets irradiated with 24 GeV protons. These fission events could not be attributed to actinides or to any other known isotope. Marinov et al. propose that fission events are due to production of element 112 (Eka-Hg) in the tungsten target. We have addressed Marinov’s claim with a new analysis of their data and modern theoretical model calculations of possible interactions. Using data available in the literature the spontaneous fission half-life of the Eka-Hg was estimated to be ~74 days. This is dramatically longer than the half-life obtained for 283112Cn, produced in the fusion of energetic 48Ca ions with 238U. Monte Carlo calculations show that enough Sr isotopes are produced in the tungsten target to make the production of element 112 via fusion of Sr and W feasible; however, if such fusion was possible it had to be deep sub-barrier fusion.