Emile Niringiyimana, Sun WanQuan, Giovanni Dushimimana
{"title":"卢旺达偏远地区电气化混合光伏/水电系统可行性研究","authors":"Emile Niringiyimana, Sun WanQuan, Giovanni Dushimimana","doi":"10.1155/2022/4030369","DOIUrl":null,"url":null,"abstract":"Rwanda is among the least developed countries on the globe with total access to electricity not exceeding 63%, where the rest of the population lives in areas with no access to electricity. One such a place, which is the focus of this research, is Musanze district (1.4919 S, 29.5572 E), where 60% of the population in this area are located in remote areas, which makes the task of their electrification via grid system very difficult. Micro hydropower has been developed so far to reduce the deficit of energy access in this area. However, the power generated is not enough to cover the area, and the major problem is the decrease in river water level in the dry season, which affects the power generation. In this work, the feasibility of a hybrid PV/hydroelectric supply system is studied and optimized to increase the number of homes accessing electricity in this area. A 200 kW Mutobo micro hydro system in Musanze district under operation is considered a case study where a 100 kW PV array tied to the micro hydropower system is designed. The optimized PV-hydro hybrid system was proposed using a modified \n \n P\n \n and O MPPT algorithm to enhance the PV-generated power. The model was designed and simulated using MATLAB/Simulink, and data recorded from Mutobo micro hydropower station, Rwanda Energy Group, and National Meteorological Agency were used to estimate solar energy potentials. The results showed that the hybrid PV/hydro system is feasible and effectively contributes to the power shortage mitigation in remote areas during the dry season.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Feasibility Study of a Hybrid PV/Hydro System for Remote Area Electrification in Rwanda\",\"authors\":\"Emile Niringiyimana, Sun WanQuan, Giovanni Dushimimana\",\"doi\":\"10.1155/2022/4030369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rwanda is among the least developed countries on the globe with total access to electricity not exceeding 63%, where the rest of the population lives in areas with no access to electricity. One such a place, which is the focus of this research, is Musanze district (1.4919 S, 29.5572 E), where 60% of the population in this area are located in remote areas, which makes the task of their electrification via grid system very difficult. Micro hydropower has been developed so far to reduce the deficit of energy access in this area. However, the power generated is not enough to cover the area, and the major problem is the decrease in river water level in the dry season, which affects the power generation. In this work, the feasibility of a hybrid PV/hydroelectric supply system is studied and optimized to increase the number of homes accessing electricity in this area. A 200 kW Mutobo micro hydro system in Musanze district under operation is considered a case study where a 100 kW PV array tied to the micro hydropower system is designed. The optimized PV-hydro hybrid system was proposed using a modified \\n \\n P\\n \\n and O MPPT algorithm to enhance the PV-generated power. The model was designed and simulated using MATLAB/Simulink, and data recorded from Mutobo micro hydropower station, Rwanda Energy Group, and National Meteorological Agency were used to estimate solar energy potentials. The results showed that the hybrid PV/hydro system is feasible and effectively contributes to the power shortage mitigation in remote areas during the dry season.\",\"PeriodicalId\":30460,\"journal\":{\"name\":\"Journal of Renewable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4030369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4030369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility Study of a Hybrid PV/Hydro System for Remote Area Electrification in Rwanda
Rwanda is among the least developed countries on the globe with total access to electricity not exceeding 63%, where the rest of the population lives in areas with no access to electricity. One such a place, which is the focus of this research, is Musanze district (1.4919 S, 29.5572 E), where 60% of the population in this area are located in remote areas, which makes the task of their electrification via grid system very difficult. Micro hydropower has been developed so far to reduce the deficit of energy access in this area. However, the power generated is not enough to cover the area, and the major problem is the decrease in river water level in the dry season, which affects the power generation. In this work, the feasibility of a hybrid PV/hydroelectric supply system is studied and optimized to increase the number of homes accessing electricity in this area. A 200 kW Mutobo micro hydro system in Musanze district under operation is considered a case study where a 100 kW PV array tied to the micro hydropower system is designed. The optimized PV-hydro hybrid system was proposed using a modified
P
and O MPPT algorithm to enhance the PV-generated power. The model was designed and simulated using MATLAB/Simulink, and data recorded from Mutobo micro hydropower station, Rwanda Energy Group, and National Meteorological Agency were used to estimate solar energy potentials. The results showed that the hybrid PV/hydro system is feasible and effectively contributes to the power shortage mitigation in remote areas during the dry season.