关于贝叶斯序列变化点检测

IF 0.1 Q4 STATISTICS & PROBABILITY JIRSS-Journal of the Iranian Statistical Society Pub Date : 2017-06-25 DOI:10.18869/ACADPUB.JIRSS/20170601
Gholamhossein Gholami
{"title":"关于贝叶斯序列变化点检测","authors":"Gholamhossein Gholami","doi":"10.18869/ACADPUB.JIRSS/20170601","DOIUrl":null,"url":null,"abstract":". The problems of sequential change-point have several important appli-cations, including quality control, failure detection in industrial, finance and signal detection. We discuss a Bayesian approach in the context of statistical process control: at an unknown time (cid:28) , the process behavior changes and the distribution of the data changes from p 0 to p 1 . Two cases are considered: (i) p 0 and p 1 are fully known, (ii) p 0 and p 1 belong to the same family of distributions with some unknown parameters (cid:18) 1 , (cid:18) 2 . We present a maximum a posteriori estimate of the change-point which, for the case (i) can be computed in a sequential manner. In addition, we propose the use of the Shiryaev’s loss function. Under this assumption, we define a Bayesian stopping rule. For the Poisson distribution and in the two cases (i) and (ii), we obtain results for the conjugate prior.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"16 1","pages":"77-94"},"PeriodicalIF":0.1000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Bayesian Sequential Change-Point Detection\",\"authors\":\"Gholamhossein Gholami\",\"doi\":\"10.18869/ACADPUB.JIRSS/20170601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The problems of sequential change-point have several important appli-cations, including quality control, failure detection in industrial, finance and signal detection. We discuss a Bayesian approach in the context of statistical process control: at an unknown time (cid:28) , the process behavior changes and the distribution of the data changes from p 0 to p 1 . Two cases are considered: (i) p 0 and p 1 are fully known, (ii) p 0 and p 1 belong to the same family of distributions with some unknown parameters (cid:18) 1 , (cid:18) 2 . We present a maximum a posteriori estimate of the change-point which, for the case (i) can be computed in a sequential manner. In addition, we propose the use of the Shiryaev’s loss function. Under this assumption, we define a Bayesian stopping rule. For the Poisson distribution and in the two cases (i) and (ii), we obtain results for the conjugate prior.\",\"PeriodicalId\":42965,\"journal\":{\"name\":\"JIRSS-Journal of the Iranian Statistical Society\",\"volume\":\"16 1\",\"pages\":\"77-94\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIRSS-Journal of the Iranian Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18869/ACADPUB.JIRSS/20170601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.JIRSS/20170601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

.顺序变化点的问题有几个重要的应用,包括质量控制、工业中的故障检测、金融和信号检测。我们在统计过程控制的背景下讨论了贝叶斯方法:在未知时间(cid:28),过程行为发生变化,数据分布从p0变化到p1。考虑了两种情况:(i)p0和p1是完全已知的,(ii)p0与p1属于具有一些未知参数的分布族(cid:18)1,(cid:18)2。我们提出了变化点的最大后验估计,对于情况(i),该估计可以以顺序方式计算。此外,我们还建议使用Shiryaev损失函数。在此假设下,我们定义了一个贝叶斯停止规则。对于泊松分布,在(i)和(ii)这两种情况下,我们获得了共轭先验的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Bayesian Sequential Change-Point Detection
. The problems of sequential change-point have several important appli-cations, including quality control, failure detection in industrial, finance and signal detection. We discuss a Bayesian approach in the context of statistical process control: at an unknown time (cid:28) , the process behavior changes and the distribution of the data changes from p 0 to p 1 . Two cases are considered: (i) p 0 and p 1 are fully known, (ii) p 0 and p 1 belong to the same family of distributions with some unknown parameters (cid:18) 1 , (cid:18) 2 . We present a maximum a posteriori estimate of the change-point which, for the case (i) can be computed in a sequential manner. In addition, we propose the use of the Shiryaev’s loss function. Under this assumption, we define a Bayesian stopping rule. For the Poisson distribution and in the two cases (i) and (ii), we obtain results for the conjugate prior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Random Projection-Based Anderson-Darling Test for Random Fields Time Series Modeling of Coronavirus (COVID-19) Spread in Iran A Comparative Study of Some Clustering Algorithms on Shape Data A Discrete Kumaraswamy Marshall-Olkin Exponential Distribution Preservation of Stochastic Orderings of Interdependent Series and Parallel Systems by Componentwise Switching to Exponentiated Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1