GFRP加固LVL构件节点及有限元分析

IF 0.7 4区 农林科学 Q4 MATERIALS SCIENCE, PAPER & WOOD Drvna Industrija Pub Date : 2022-03-19 DOI:10.5552/drvind.2022.2049
M. Dalvand, G. Ebrahimi, K. Pourtahmasi
{"title":"GFRP加固LVL构件节点及有限元分析","authors":"M. Dalvand, G. Ebrahimi, K. Pourtahmasi","doi":"10.5552/drvind.2022.2049","DOIUrl":null,"url":null,"abstract":"The goal of this study was to investigate the effect of glass fiber reinforced polymer (GFRP) on joints made of laminated veneer lumber (LVL), through experimental data and evaluation by ANSYS finite element (FE) software. In order to fabricate LVL, veneer from poplar (Populus deltoides Bartr. ex Marsh) with 2.5 mm thickness and PVA adhesive were used. T-shape joints out of LVL were made and two wooden dowels were incorporated as well. Then GFRP was applied to reinforce the joints. GFRP in three grammages (100, 200 and 300 g/ m2) was adhered to joints with epoxy resin. Joints reinforcement was performed by a two-layer reinforcing agent. For comparing the effectiveness, half of the specimens were reinforced on sides and the other half on edges. Specimens were tested in static bending. The results have shown that GFRP had a significant effect on the strength of joints. Reinforced joints on both sides were stronger than those reinforced on edge. Joints reinforced with 300 g/m2 GFRP were improved by 35 % and 43 %, respectively, compared to 100 and 200 g/m2 grammage. Failure modes of specimens are dependent on GFRP grammage. The results of FE have shown that the highest concentration of stress and elastic strain was generated in the tension and compression zones of joints.","PeriodicalId":11427,"journal":{"name":"Drvna Industrija","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reinforcement of Joints Between LVL Members with GFRP and Finite Element Analysis\",\"authors\":\"M. Dalvand, G. Ebrahimi, K. Pourtahmasi\",\"doi\":\"10.5552/drvind.2022.2049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study was to investigate the effect of glass fiber reinforced polymer (GFRP) on joints made of laminated veneer lumber (LVL), through experimental data and evaluation by ANSYS finite element (FE) software. In order to fabricate LVL, veneer from poplar (Populus deltoides Bartr. ex Marsh) with 2.5 mm thickness and PVA adhesive were used. T-shape joints out of LVL were made and two wooden dowels were incorporated as well. Then GFRP was applied to reinforce the joints. GFRP in three grammages (100, 200 and 300 g/ m2) was adhered to joints with epoxy resin. Joints reinforcement was performed by a two-layer reinforcing agent. For comparing the effectiveness, half of the specimens were reinforced on sides and the other half on edges. Specimens were tested in static bending. The results have shown that GFRP had a significant effect on the strength of joints. Reinforced joints on both sides were stronger than those reinforced on edge. Joints reinforced with 300 g/m2 GFRP were improved by 35 % and 43 %, respectively, compared to 100 and 200 g/m2 grammage. Failure modes of specimens are dependent on GFRP grammage. The results of FE have shown that the highest concentration of stress and elastic strain was generated in the tension and compression zones of joints.\",\"PeriodicalId\":11427,\"journal\":{\"name\":\"Drvna Industrija\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drvna Industrija\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5552/drvind.2022.2049\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drvna Industrija","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5552/drvind.2022.2049","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是通过实验数据和ANSYS有限元(FE)软件的评估来研究玻璃纤维增强聚合物(GFRP)对层压单板木材(LVL)接缝的影响。为了制造LVL,用杨木(Populus deltoides Bartr)做单板。(如Marsh),厚度为2.5 mm,使用PVA胶粘剂。t形接头由LVL制成,并结合了两个木榫。然后采用GFRP对节点进行加固。用环氧树脂将100g、200g和300g / m2的GFRP粘接在接头上。采用双层补强剂对接缝进行补强。为了比较加固效果,一半的试件在侧面加固,另一半在边缘加固。试件进行静态弯曲试验。结果表明,GFRP对节点强度有显著影响。两侧加固的节点比边缘加固的节点更坚固。与100克/平方米和200克/平方米的GFRP相比,300克/平方米GFRP加固的接缝分别提高了35%和43%。试件的破坏模式取决于GFRP的克重。有限元分析结果表明,节理拉压区产生的应力和弹性应变最集中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement of Joints Between LVL Members with GFRP and Finite Element Analysis
The goal of this study was to investigate the effect of glass fiber reinforced polymer (GFRP) on joints made of laminated veneer lumber (LVL), through experimental data and evaluation by ANSYS finite element (FE) software. In order to fabricate LVL, veneer from poplar (Populus deltoides Bartr. ex Marsh) with 2.5 mm thickness and PVA adhesive were used. T-shape joints out of LVL were made and two wooden dowels were incorporated as well. Then GFRP was applied to reinforce the joints. GFRP in three grammages (100, 200 and 300 g/ m2) was adhered to joints with epoxy resin. Joints reinforcement was performed by a two-layer reinforcing agent. For comparing the effectiveness, half of the specimens were reinforced on sides and the other half on edges. Specimens were tested in static bending. The results have shown that GFRP had a significant effect on the strength of joints. Reinforced joints on both sides were stronger than those reinforced on edge. Joints reinforced with 300 g/m2 GFRP were improved by 35 % and 43 %, respectively, compared to 100 and 200 g/m2 grammage. Failure modes of specimens are dependent on GFRP grammage. The results of FE have shown that the highest concentration of stress and elastic strain was generated in the tension and compression zones of joints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drvna Industrija
Drvna Industrija MATERIALS SCIENCE, PAPER & WOOD-
CiteScore
1.80
自引率
9.10%
发文量
32
审稿时长
>12 weeks
期刊介绍: "Drvna industrija" ("Wood Industry") journal publishes original scientific and review papers, short notes, professional papers, conference papers, reports, professional information, bibliographical and survey articles and general notes relating to the forestry exploitation, biology, chemistry, physics and technology of wood, pulp and paper and wood components, including production, management and marketing aspects in the woodworking industry.
期刊最新文献
Timber Strength Grading as Necessary Basis for Structural Design in Ex-YU Region Intenzitet toplinske modifikacije topolovine. Dio 1 Bio-Durability and Engineering Characteristics of Heat-Treated Poplar Wood Usporedba reakcijskoga i normalnog drva nekih komercijalnih vrsta drva Modeliranje dizajna boje površine namještaja CNC laserskom modifikacijom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1