2010-2020年斯洛文尼亚劳动力网络的社区分析

IF 2.8 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Journal of Decision Systems Pub Date : 2022-05-16 DOI:10.1080/12460125.2022.2070944
Viktor Andonovikj, P. Boškoski, Bojan Evkoski, Tjaša Redek, B. Mileva Boshkoska
{"title":"2010-2020年斯洛文尼亚劳动力网络的社区分析","authors":"Viktor Andonovikj, P. Boškoski, Bojan Evkoski, Tjaša Redek, B. Mileva Boshkoska","doi":"10.1080/12460125.2022.2070944","DOIUrl":null,"url":null,"abstract":"ABSTRACT There is little evidence on the right approach on how to delineate the sub-networks in a labour market. The subject of research in this paper is computational influence identification of the labour force transitions between different professional occupations in the Slovenian labour network from 2010 to 2020. We use community detection algorithm to identify occupation groups and apply influence analysis on the Slovenian labour network from 2010 to 2020. This directly supports the decision-makers and employment services in identifying job opportunities for job-seekers based. The main conribution is using influence analysis to detect occupations and communities that had the most significant impact on the Slovenian labour market. The research is the first work to successfully apply community and influence analysis in the Slovenian labour network to the best of our knowledge. The paper carries several important implications, primarily highlighting the usage of existing data to increase employment levels.","PeriodicalId":45565,"journal":{"name":"Journal of Decision Systems","volume":"31 1","pages":"308 - 318"},"PeriodicalIF":2.8000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Community analysis in Slovenian labour network 2010-2020\",\"authors\":\"Viktor Andonovikj, P. Boškoski, Bojan Evkoski, Tjaša Redek, B. Mileva Boshkoska\",\"doi\":\"10.1080/12460125.2022.2070944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT There is little evidence on the right approach on how to delineate the sub-networks in a labour market. The subject of research in this paper is computational influence identification of the labour force transitions between different professional occupations in the Slovenian labour network from 2010 to 2020. We use community detection algorithm to identify occupation groups and apply influence analysis on the Slovenian labour network from 2010 to 2020. This directly supports the decision-makers and employment services in identifying job opportunities for job-seekers based. The main conribution is using influence analysis to detect occupations and communities that had the most significant impact on the Slovenian labour market. The research is the first work to successfully apply community and influence analysis in the Slovenian labour network to the best of our knowledge. The paper carries several important implications, primarily highlighting the usage of existing data to increase employment levels.\",\"PeriodicalId\":45565,\"journal\":{\"name\":\"Journal of Decision Systems\",\"volume\":\"31 1\",\"pages\":\"308 - 318\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Decision Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/12460125.2022.2070944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Decision Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/12460125.2022.2070944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

摘要:关于如何在劳动力市场中划分子网络,几乎没有证据表明正确的方法。本文的研究主题是2010年至2020年斯洛文尼亚劳动力网络中不同专业职业之间劳动力转移的计算影响识别。我们使用社区检测算法来识别职业群体,并对2010-2020年斯洛文尼亚劳动力网络进行影响分析。这直接支持决策者和就业服务部门为求职者确定工作机会。主要的分配是利用影响力分析来发现对斯洛文尼亚劳动力市场影响最大的职业和社区。据我们所知,这项研究是第一项在斯洛文尼亚劳动力网络中成功应用社区和影响力分析的工作。该论文具有几个重要意义,主要强调了利用现有数据来提高就业水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Community analysis in Slovenian labour network 2010-2020
ABSTRACT There is little evidence on the right approach on how to delineate the sub-networks in a labour market. The subject of research in this paper is computational influence identification of the labour force transitions between different professional occupations in the Slovenian labour network from 2010 to 2020. We use community detection algorithm to identify occupation groups and apply influence analysis on the Slovenian labour network from 2010 to 2020. This directly supports the decision-makers and employment services in identifying job opportunities for job-seekers based. The main conribution is using influence analysis to detect occupations and communities that had the most significant impact on the Slovenian labour market. The research is the first work to successfully apply community and influence analysis in the Slovenian labour network to the best of our knowledge. The paper carries several important implications, primarily highlighting the usage of existing data to increase employment levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Decision Systems
Journal of Decision Systems OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
6.30
自引率
23.50%
发文量
55
期刊最新文献
Public acceptance of smart home technologies in the UK: a citizens’ jury study Perceptions of facilitators towards adoption of AI-based solutions for sustainable agriculture I am therefore, I do: a fit perspective of decision-making styles and business intelligence usage AI: A knowledge sharing tool for improving employees’ performance Data-driven decision making in advanced manufacturing Systems: modeling and analysis of critical success factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1