基于工程生命材料的传感和驱动

Shan-shan Liu, Weinan Xu
{"title":"基于工程生命材料的传感和驱动","authors":"Shan-shan Liu, Weinan Xu","doi":"10.3389/fsens.2020.586300","DOIUrl":null,"url":null,"abstract":"The integration of functional synthetic materials and living biological entities has emerged as a new and powerful approach to create adaptive and functional structures with unprecedented performance and functionalities. Such hybrid structures are also called engineered living materials (ELMs). ELMs have the potential to realize many highly-desired properties, which are usually only found in biological systems, such as the abilities to self-power, self-heal, response to biosignals, and self-sustainable. Motivated by that, in recent years, researchers have started to explore the use of ELMs in many areas, among them, sensing and actuation is the area that has seen the most progress. In this short review, we briefly reviewed the important recent development in ELMs-based sensors and actuators, with a focus on their materials and structural design, new fabrication technologies, and bio-related applications. Current challenges and future directions in this field are also identified to help with future development in this emerging interdisciplinary field.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Engineered Living Materials-Based Sensing and Actuation\",\"authors\":\"Shan-shan Liu, Weinan Xu\",\"doi\":\"10.3389/fsens.2020.586300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of functional synthetic materials and living biological entities has emerged as a new and powerful approach to create adaptive and functional structures with unprecedented performance and functionalities. Such hybrid structures are also called engineered living materials (ELMs). ELMs have the potential to realize many highly-desired properties, which are usually only found in biological systems, such as the abilities to self-power, self-heal, response to biosignals, and self-sustainable. Motivated by that, in recent years, researchers have started to explore the use of ELMs in many areas, among them, sensing and actuation is the area that has seen the most progress. In this short review, we briefly reviewed the important recent development in ELMs-based sensors and actuators, with a focus on their materials and structural design, new fabrication technologies, and bio-related applications. Current challenges and future directions in this field are also identified to help with future development in this emerging interdisciplinary field.\",\"PeriodicalId\":93754,\"journal\":{\"name\":\"Frontiers in sensors\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsens.2020.586300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsens.2020.586300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

功能性合成材料和活体生物实体的整合已经成为一种新的强大方法,可以创造出具有前所未有性能和功能的适应性和功能性结构。这种混合结构也被称为工程生活材料(ELM)。ELM有潜力实现许多人们高度期望的特性,这些特性通常只在生物系统中发现,例如自我力量、自我治愈、对生物信号的反应和自我可持续的能力。受此启发,近年来,研究人员开始探索ELM在许多领域的应用,其中传感和驱动是进展最快的领域。在这篇简短的综述中,我们简要回顾了基于ELM的传感器和致动器的最新重要发展,重点介绍了它们的材料和结构设计、新的制造技术以及生物相关应用。还确定了该领域的当前挑战和未来方向,以帮助这一新兴跨学科领域的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineered Living Materials-Based Sensing and Actuation
The integration of functional synthetic materials and living biological entities has emerged as a new and powerful approach to create adaptive and functional structures with unprecedented performance and functionalities. Such hybrid structures are also called engineered living materials (ELMs). ELMs have the potential to realize many highly-desired properties, which are usually only found in biological systems, such as the abilities to self-power, self-heal, response to biosignals, and self-sustainable. Motivated by that, in recent years, researchers have started to explore the use of ELMs in many areas, among them, sensing and actuation is the area that has seen the most progress. In this short review, we briefly reviewed the important recent development in ELMs-based sensors and actuators, with a focus on their materials and structural design, new fabrication technologies, and bio-related applications. Current challenges and future directions in this field are also identified to help with future development in this emerging interdisciplinary field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Thought leaders in sensor research: volume 1 Electronic tongue made of gelatin self-supporting films on printed electrodes to detect lactose Learning control for body caudal undulation with soft sensory feedback Erratum: AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection Evaluation of a point-of-use device used for autoantibody analysis and its potential for following microcystin leucine-arginine exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1