可变感知的ReRAM CIM宏的位切片方法

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2023-04-21 DOI:10.1515/itit-2023-0018
C. Bengel, Leon Dixius, R. Waser, D. Wouters, S. Menzel
{"title":"可变感知的ReRAM CIM宏的位切片方法","authors":"C. Bengel, Leon Dixius, R. Waser, D. Wouters, S. Menzel","doi":"10.1515/itit-2023-0018","DOIUrl":null,"url":null,"abstract":"Abstract Computation-in-Memory accelerators based on resistive switching devices represent a promising approach to realize future information processing systems. These architectures promise orders of magnitudes lower energy consumption for certain tasks, while also achieving higher throughputs than other special purpose hardware such as GPUs, due to their analog computation nature. Due to device variability issues, however, a single resistive switching cell usually does not achieve the resolution required for the considered applications. To overcome this challenge, many of the proposed architectures use an approach called bit slicing, where generally multiple low-resolution components are combined to realize higher resolution blocks. In this paper, we will present an analog accelerator architecture on the circuit level, which can be used to perform Vector-Matrix-Multiplications or Matrix-Matrix-Multiplications. The architecture consists of the 1T1R crossbar array, the optimized select circuitry and an ADC. The components are designed to handle the variability of the resistive switching cells, which is verified through our verified and physical compact model. We then use this architecture to compare different bit slicing approaches and discuss their tradeoffs.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bit slicing approaches for variability aware ReRAM CIM macros\",\"authors\":\"C. Bengel, Leon Dixius, R. Waser, D. Wouters, S. Menzel\",\"doi\":\"10.1515/itit-2023-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Computation-in-Memory accelerators based on resistive switching devices represent a promising approach to realize future information processing systems. These architectures promise orders of magnitudes lower energy consumption for certain tasks, while also achieving higher throughputs than other special purpose hardware such as GPUs, due to their analog computation nature. Due to device variability issues, however, a single resistive switching cell usually does not achieve the resolution required for the considered applications. To overcome this challenge, many of the proposed architectures use an approach called bit slicing, where generally multiple low-resolution components are combined to realize higher resolution blocks. In this paper, we will present an analog accelerator architecture on the circuit level, which can be used to perform Vector-Matrix-Multiplications or Matrix-Matrix-Multiplications. The architecture consists of the 1T1R crossbar array, the optimized select circuitry and an ADC. The components are designed to handle the variability of the resistive switching cells, which is verified through our verified and physical compact model. We then use this architecture to compare different bit slicing approaches and discuss their tradeoffs.\",\"PeriodicalId\":43953,\"journal\":{\"name\":\"IT-Information Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IT-Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/itit-2023-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2023-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要基于电阻开关器件的内存计算加速器是实现未来信息处理系统的一种很有前途的方法。由于其模拟计算性质,这些架构承诺为某些任务降低几个数量级的能耗,同时也实现了比GPU等其他专用硬件更高的吞吐量。然而,由于器件的可变性问题,单个电阻开关单元通常不能达到所考虑的应用所需的分辨率。为了克服这一挑战,许多提出的体系结构使用了一种称为位切片的方法,通常将多个低分辨率组件组合起来以实现更高分辨率的块。在本文中,我们将在电路级别上提出一种模拟加速器架构,该架构可用于执行向量矩阵乘法或矩阵矩阵乘法。该体系结构由1T1R纵横制阵列、优化的选择电路和ADC组成。这些组件被设计用于处理电阻开关单元的可变性,这通过我们经过验证的物理紧凑模型进行了验证。然后,我们使用这个体系结构来比较不同的位切片方法,并讨论它们的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bit slicing approaches for variability aware ReRAM CIM macros
Abstract Computation-in-Memory accelerators based on resistive switching devices represent a promising approach to realize future information processing systems. These architectures promise orders of magnitudes lower energy consumption for certain tasks, while also achieving higher throughputs than other special purpose hardware such as GPUs, due to their analog computation nature. Due to device variability issues, however, a single resistive switching cell usually does not achieve the resolution required for the considered applications. To overcome this challenge, many of the proposed architectures use an approach called bit slicing, where generally multiple low-resolution components are combined to realize higher resolution blocks. In this paper, we will present an analog accelerator architecture on the circuit level, which can be used to perform Vector-Matrix-Multiplications or Matrix-Matrix-Multiplications. The architecture consists of the 1T1R crossbar array, the optimized select circuitry and an ADC. The components are designed to handle the variability of the resistive switching cells, which is verified through our verified and physical compact model. We then use this architecture to compare different bit slicing approaches and discuss their tradeoffs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1