gisscience可以促进太阳能城市的发展,实现能源转型

IF 13 Q1 ENERGY & FUELS Advances in Applied Energy Pub Date : 2023-06-01 DOI:10.1016/j.adapen.2023.100129
Rui Zhu , Mei-Po Kwan , A.T.D. Perera , Hongchao Fan , Bisheng Yang , Biyu Chen , Min Chen , Zhen Qian , Haoran Zhang , Xiaohu Zhang , Jinxin Yang , Paolo Santi , Carlo Ratti , Wenting Li , Jinyue Yan
{"title":"gisscience可以促进太阳能城市的发展,实现能源转型","authors":"Rui Zhu ,&nbsp;Mei-Po Kwan ,&nbsp;A.T.D. Perera ,&nbsp;Hongchao Fan ,&nbsp;Bisheng Yang ,&nbsp;Biyu Chen ,&nbsp;Min Chen ,&nbsp;Zhen Qian ,&nbsp;Haoran Zhang ,&nbsp;Xiaohu Zhang ,&nbsp;Jinxin Yang ,&nbsp;Paolo Santi ,&nbsp;Carlo Ratti ,&nbsp;Wenting Li ,&nbsp;Jinyue Yan","doi":"10.1016/j.adapen.2023.100129","DOIUrl":null,"url":null,"abstract":"<div><p>The energy transition is increasingly being discussed and implemented to cope with the growing environmental crisis. However, great challenges remain for effectively harvesting and utilizing solar energy in cities related to time and location-dependant supply and demand, which needs more accurate forecasting- and an in-depth understanding of the electricity production and dynamic balancing of the flexible energy supplies concerning the electricity market. To tackle this problem, this article discusses the development of solar cities over the past few decades and proposes a refined and enriched concept of a sustainable solar city with six integrated modules, namely, land surface solar irradiation, three-dimensional (3D) urban surfaces, spatiotemporal solar distribution on 3D urban surfaces, solar photovoltaic (PV) planning, solar PV penetration into different urban systems, and the consequent socio-economic and environmental impacts. In this context, Geographical Information Science (GIScience) demonstrates its potent capability in building the conceptualized solar city with a dynamic balance between power supply and demand over time and space, which includes the production of multi-sourced spatiotemporal big data, the development of spatiotemporal data modelling, analysing and optimization, and geo-visualization. To facilitate the development of such a solar city, this article from the GIScience perspective discusses the achievements and challenges of (i) the development of spatiotemporal big data used for solar farming, (ii) the estimation of solar PV potential on 3D urban surfaces, (iii) the penetration of distributed PV systems in digital cities that contains the effects of urban morphology on solar accessibility, optimization of PV systems for dynamic balancing between supply and demand, and PV penetration represented by the solar charging of urban mobility, and (iv) the interaction between PV systems and urban thermal environment. We suggest that GIScience is the foundation, while further development of GIS models is required to achieve the proposed sustainable solar city.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"10 ","pages":"Article 100129"},"PeriodicalIF":13.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"GIScience can facilitate the development of solar cities for energy transition\",\"authors\":\"Rui Zhu ,&nbsp;Mei-Po Kwan ,&nbsp;A.T.D. Perera ,&nbsp;Hongchao Fan ,&nbsp;Bisheng Yang ,&nbsp;Biyu Chen ,&nbsp;Min Chen ,&nbsp;Zhen Qian ,&nbsp;Haoran Zhang ,&nbsp;Xiaohu Zhang ,&nbsp;Jinxin Yang ,&nbsp;Paolo Santi ,&nbsp;Carlo Ratti ,&nbsp;Wenting Li ,&nbsp;Jinyue Yan\",\"doi\":\"10.1016/j.adapen.2023.100129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The energy transition is increasingly being discussed and implemented to cope with the growing environmental crisis. However, great challenges remain for effectively harvesting and utilizing solar energy in cities related to time and location-dependant supply and demand, which needs more accurate forecasting- and an in-depth understanding of the electricity production and dynamic balancing of the flexible energy supplies concerning the electricity market. To tackle this problem, this article discusses the development of solar cities over the past few decades and proposes a refined and enriched concept of a sustainable solar city with six integrated modules, namely, land surface solar irradiation, three-dimensional (3D) urban surfaces, spatiotemporal solar distribution on 3D urban surfaces, solar photovoltaic (PV) planning, solar PV penetration into different urban systems, and the consequent socio-economic and environmental impacts. In this context, Geographical Information Science (GIScience) demonstrates its potent capability in building the conceptualized solar city with a dynamic balance between power supply and demand over time and space, which includes the production of multi-sourced spatiotemporal big data, the development of spatiotemporal data modelling, analysing and optimization, and geo-visualization. To facilitate the development of such a solar city, this article from the GIScience perspective discusses the achievements and challenges of (i) the development of spatiotemporal big data used for solar farming, (ii) the estimation of solar PV potential on 3D urban surfaces, (iii) the penetration of distributed PV systems in digital cities that contains the effects of urban morphology on solar accessibility, optimization of PV systems for dynamic balancing between supply and demand, and PV penetration represented by the solar charging of urban mobility, and (iv) the interaction between PV systems and urban thermal environment. We suggest that GIScience is the foundation, while further development of GIS models is required to achieve the proposed sustainable solar city.</p></div>\",\"PeriodicalId\":34615,\"journal\":{\"name\":\"Advances in Applied Energy\",\"volume\":\"10 \",\"pages\":\"Article 100129\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666792423000082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792423000082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 12

摘要

为了应对日益严重的环境危机,人们越来越多地讨论和实施能源转型。然而,在城市中有效地收集和利用太阳能仍然面临着巨大的挑战,这与时间和地点相关的供需关系,这需要更准确的预测-以及对电力市场中灵活能源供应的电力生产和动态平衡的深入了解。为了解决这一问题,本文讨论了过去几十年太阳能城市的发展,并提出了一个完善和丰富的可持续太阳能城市概念,包括六个集成模块,即陆地表面太阳辐射,三维(3D)城市表面,三维城市表面的太阳能时空分布,太阳能光伏(PV)规划,太阳能光伏在不同城市系统中的渗透,以及由此产生的社会经济和环境影响。在此背景下,地理信息科学(GIScience)在构建电力供需随时间和空间动态平衡的概念化太阳城方面显示出强大的能力,包括多源时空大数据的生成,时空数据建模、分析和优化的发展以及地理可视化。为了促进这样一个太阳能城市的发展,本文从GIScience的角度讨论了以下方面的成就和挑战:(i)用于太阳能农业的时空大数据的发展,(ii)三维城市表面太阳能光伏潜力的估计,(iii)分布式光伏系统在包含城市形态对太阳能可达性影响的数字城市中的渗透,优化光伏系统以实现供需动态平衡,(4)光伏系统与城市热环境的相互作用。我们认为,GIS科学是基础,而GIS模型的进一步发展需要实现所提出的可持续太阳能城市。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GIScience can facilitate the development of solar cities for energy transition

The energy transition is increasingly being discussed and implemented to cope with the growing environmental crisis. However, great challenges remain for effectively harvesting and utilizing solar energy in cities related to time and location-dependant supply and demand, which needs more accurate forecasting- and an in-depth understanding of the electricity production and dynamic balancing of the flexible energy supplies concerning the electricity market. To tackle this problem, this article discusses the development of solar cities over the past few decades and proposes a refined and enriched concept of a sustainable solar city with six integrated modules, namely, land surface solar irradiation, three-dimensional (3D) urban surfaces, spatiotemporal solar distribution on 3D urban surfaces, solar photovoltaic (PV) planning, solar PV penetration into different urban systems, and the consequent socio-economic and environmental impacts. In this context, Geographical Information Science (GIScience) demonstrates its potent capability in building the conceptualized solar city with a dynamic balance between power supply and demand over time and space, which includes the production of multi-sourced spatiotemporal big data, the development of spatiotemporal data modelling, analysing and optimization, and geo-visualization. To facilitate the development of such a solar city, this article from the GIScience perspective discusses the achievements and challenges of (i) the development of spatiotemporal big data used for solar farming, (ii) the estimation of solar PV potential on 3D urban surfaces, (iii) the penetration of distributed PV systems in digital cities that contains the effects of urban morphology on solar accessibility, optimization of PV systems for dynamic balancing between supply and demand, and PV penetration represented by the solar charging of urban mobility, and (iv) the interaction between PV systems and urban thermal environment. We suggest that GIScience is the foundation, while further development of GIS models is required to achieve the proposed sustainable solar city.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
期刊最新文献
Digitalization of urban multi-energy systems – Advances in digital twin applications across life-cycle phases Multi-scale electricity consumption prediction model based on land use and interpretable machine learning: A case study of China Green light for bidirectional charging? Unveiling grid repercussions and life cycle impacts Hydrogen production via solid oxide electrolysis: Balancing environmental issues and material criticality MANGOever: An optimization framework for the long-term planning and operations of integrated electric vehicle and building energy systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1