利用机器学习工具有效改进沥青粘结剂表面自由能估计

IF 0.3 Q4 ENGINEERING, MULTIDISCIPLINARY UIS Ingenierias Pub Date : 2021-05-10 DOI:10.18273/revuin.v20n3-2021013
David Sierra-Porta
{"title":"利用机器学习工具有效改进沥青粘结剂表面自由能估计","authors":"David Sierra-Porta","doi":"10.18273/revuin.v20n3-2021013","DOIUrl":null,"url":null,"abstract":"The Surface Free Energy (SFE) of a material is defined as the energy needed to create a new surface unit under vacuum conditions. This property is directly related to the resistance to fracture and recovery of material and the ability to create strong adhesion with other materials. This value can be used as a complementary parameter for the selection and optimal combination of materials for asphalt mixtures, as well as in the micromechanical modelingof fracture and recovery processes of said mixtures. This document describes the results of the implementation of the use of machine learning and Random Forest prediction techniques for the estimation of surface free energy based on data from previous studies. The experimental samples were twenty-three asphalt binders used in a Strategic Highway Research Program (SHRP). A decrease of 54% and 82% in the mean absolute error (MAE) and the mean square error (MSE), respectively was found for the new model built. While the model fits better with a 12% improvement, according to the adjusted determination coefficient, the accuracy and the score of the model also increases notably in 2% and 55%, respectively.","PeriodicalId":42183,"journal":{"name":"UIS Ingenierias","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mejora eficiente para la estimación de la energía libre superficial del ligante asfáltico mediante herramientas de Machine Learning\",\"authors\":\"David Sierra-Porta\",\"doi\":\"10.18273/revuin.v20n3-2021013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Surface Free Energy (SFE) of a material is defined as the energy needed to create a new surface unit under vacuum conditions. This property is directly related to the resistance to fracture and recovery of material and the ability to create strong adhesion with other materials. This value can be used as a complementary parameter for the selection and optimal combination of materials for asphalt mixtures, as well as in the micromechanical modelingof fracture and recovery processes of said mixtures. This document describes the results of the implementation of the use of machine learning and Random Forest prediction techniques for the estimation of surface free energy based on data from previous studies. The experimental samples were twenty-three asphalt binders used in a Strategic Highway Research Program (SHRP). A decrease of 54% and 82% in the mean absolute error (MAE) and the mean square error (MSE), respectively was found for the new model built. While the model fits better with a 12% improvement, according to the adjusted determination coefficient, the accuracy and the score of the model also increases notably in 2% and 55%, respectively.\",\"PeriodicalId\":42183,\"journal\":{\"name\":\"UIS Ingenierias\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UIS Ingenierias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revuin.v20n3-2021013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UIS Ingenierias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revuin.v20n3-2021013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

材料的表面自由能(SFE)被定义为在真空条件下创建新的表面单元所需的能量。这种性质与材料的抗断裂和恢复能力以及与其他材料形成强粘附性的能力直接相关。该值可作为补充参数,用于沥青混合料材料的选择和最佳组合,以及所述混合料的断裂和恢复过程的微观力学模型。本文件描述了基于先前研究的数据,使用机器学习和随机森林预测技术估计表面自由能的结果。实验样品为战略公路研究计划(SHRP)中使用的23种沥青结合料。新模型的平均绝对误差(MAE)和均方误差(MSE)分别下降了54%和82%。虽然该模型更适合12%的改进,但根据调整后的确定系数,该模型的准确性和得分也分别显著提高了2%和55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mejora eficiente para la estimación de la energía libre superficial del ligante asfáltico mediante herramientas de Machine Learning
The Surface Free Energy (SFE) of a material is defined as the energy needed to create a new surface unit under vacuum conditions. This property is directly related to the resistance to fracture and recovery of material and the ability to create strong adhesion with other materials. This value can be used as a complementary parameter for the selection and optimal combination of materials for asphalt mixtures, as well as in the micromechanical modelingof fracture and recovery processes of said mixtures. This document describes the results of the implementation of the use of machine learning and Random Forest prediction techniques for the estimation of surface free energy based on data from previous studies. The experimental samples were twenty-three asphalt binders used in a Strategic Highway Research Program (SHRP). A decrease of 54% and 82% in the mean absolute error (MAE) and the mean square error (MSE), respectively was found for the new model built. While the model fits better with a 12% improvement, according to the adjusted determination coefficient, the accuracy and the score of the model also increases notably in 2% and 55%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
UIS Ingenierias
UIS Ingenierias ENGINEERING, MULTIDISCIPLINARY-
自引率
33.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
Advanced Oxidation Processes Used in The Treatment of Perfluoroalkylated Substances in Water Análisis de varianza y coeficiente de variación como criterios de repetibilidad de una estufa de cocción basada en gasificación de pellets Síntesis dimensional de dispositivos económicos para rehabilitación de extremidades superiores Critical Design of the FACSAT-2 mission CubeSat for the observation and analysis of the Colombian Territory Practical Solution for the Reconfiguration Problem in Electrical Distribution Networks: A Constructive Heuristic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1