S. Marteinson, Michael J. Lawrence, Z. Taranu, Kerri Kosziwka, Jessica J. Taylor, Alexandria Green, Amanda K. Winegardner, T. Rytwinski, Jessica L. Reid, C. Dubetz, Judith Leblanc, Michal Galus, S. Cooke
{"title":"新冠肺炎大流行期间消毒液和消毒剂的使用增加:抗菌化学品的识别和对水生环境污染的考虑","authors":"S. Marteinson, Michael J. Lawrence, Z. Taranu, Kerri Kosziwka, Jessica J. Taylor, Alexandria Green, Amanda K. Winegardner, T. Rytwinski, Jessica L. Reid, C. Dubetz, Judith Leblanc, Michal Galus, S. Cooke","doi":"10.1139/er-2022-0035","DOIUrl":null,"url":null,"abstract":"In response to the coronavirus (COVID-19) pandemic there has been an increased need for personal and environmental decontamination to aid in curbing transmission of the SARS-CoV-2 virus. Products used for this purpose include sanitizers for hands and disinfectants for surfaces. The active chemical ingredients used in these products, termed antimicrobials, can enter waste streams after application and may be emerging as more prominent environmental contaminants. Even prior to COVID-19, there was recognized need to examine their implications for aquatic biota, which is now made more pressing due to their exaggerated use in response to the pandemic. Our objectives were to identify current antimicrobial active ingredients, quantify their increased use, and determine which may be candidates for further consideration as possible aquatic contaminants. By consulting multiple sources of publicly available information in Canada, we identified current-use antimicrobials from the lists of sanitizers and surface disinfectants approved for use against SARS-CoV-2 by Health Canada and the drug registration database. To estimate the use of sanitizers and disinfectants, we evaluated import quantities and grocery store retail sales of related compounds and products (Statistics Canada) and both lines of evidence supported increased use trends. The list of identified antimicrobials was refined to include only candidates with potential to reach aquatic ecosystems, and information on their environmental concentrations and toxicity to aquatic biota were reviewed. Candidate antimicrobials (n=32) fell into four main categories: quaternary ammonium compounds (QACs), phenols, acids and salts. Benzalkonium chloride, a QAC, was the most prominent active ingredient used in both non-alcohol-based hand sanitizers and surface disinfectants. Four QACs followed in prevalence and the next most used antimicrobial was triclosan (hand sanitizers only), an established and regulated environmental contaminant. Little information was found on environmental concentrations of other candidates, suggesting that the majority would fall into the category of emerging contaminants if they enter aquatic systems. Several were classified as acutely or chronically toxic to aquatic biota (Globally Harmonised System) and thus we recommend empirical research begin focusing on environmental monitoring of all candidate antimicrobials as a critical next step, with detection method development first where needed.","PeriodicalId":50514,"journal":{"name":"Environmental Reviews","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Increased use of sanitizers and disinfectants during the COVID-19 pandemic: identification of antimicrobial chemicals and considerations for aquatic environmental contamination\",\"authors\":\"S. Marteinson, Michael J. Lawrence, Z. Taranu, Kerri Kosziwka, Jessica J. Taylor, Alexandria Green, Amanda K. Winegardner, T. Rytwinski, Jessica L. Reid, C. Dubetz, Judith Leblanc, Michal Galus, S. Cooke\",\"doi\":\"10.1139/er-2022-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the coronavirus (COVID-19) pandemic there has been an increased need for personal and environmental decontamination to aid in curbing transmission of the SARS-CoV-2 virus. Products used for this purpose include sanitizers for hands and disinfectants for surfaces. The active chemical ingredients used in these products, termed antimicrobials, can enter waste streams after application and may be emerging as more prominent environmental contaminants. Even prior to COVID-19, there was recognized need to examine their implications for aquatic biota, which is now made more pressing due to their exaggerated use in response to the pandemic. Our objectives were to identify current antimicrobial active ingredients, quantify their increased use, and determine which may be candidates for further consideration as possible aquatic contaminants. By consulting multiple sources of publicly available information in Canada, we identified current-use antimicrobials from the lists of sanitizers and surface disinfectants approved for use against SARS-CoV-2 by Health Canada and the drug registration database. To estimate the use of sanitizers and disinfectants, we evaluated import quantities and grocery store retail sales of related compounds and products (Statistics Canada) and both lines of evidence supported increased use trends. The list of identified antimicrobials was refined to include only candidates with potential to reach aquatic ecosystems, and information on their environmental concentrations and toxicity to aquatic biota were reviewed. Candidate antimicrobials (n=32) fell into four main categories: quaternary ammonium compounds (QACs), phenols, acids and salts. Benzalkonium chloride, a QAC, was the most prominent active ingredient used in both non-alcohol-based hand sanitizers and surface disinfectants. Four QACs followed in prevalence and the next most used antimicrobial was triclosan (hand sanitizers only), an established and regulated environmental contaminant. Little information was found on environmental concentrations of other candidates, suggesting that the majority would fall into the category of emerging contaminants if they enter aquatic systems. Several were classified as acutely or chronically toxic to aquatic biota (Globally Harmonised System) and thus we recommend empirical research begin focusing on environmental monitoring of all candidate antimicrobials as a critical next step, with detection method development first where needed.\",\"PeriodicalId\":50514,\"journal\":{\"name\":\"Environmental Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Reviews\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1139/er-2022-0035\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Reviews","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1139/er-2022-0035","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Increased use of sanitizers and disinfectants during the COVID-19 pandemic: identification of antimicrobial chemicals and considerations for aquatic environmental contamination
In response to the coronavirus (COVID-19) pandemic there has been an increased need for personal and environmental decontamination to aid in curbing transmission of the SARS-CoV-2 virus. Products used for this purpose include sanitizers for hands and disinfectants for surfaces. The active chemical ingredients used in these products, termed antimicrobials, can enter waste streams after application and may be emerging as more prominent environmental contaminants. Even prior to COVID-19, there was recognized need to examine their implications for aquatic biota, which is now made more pressing due to their exaggerated use in response to the pandemic. Our objectives were to identify current antimicrobial active ingredients, quantify their increased use, and determine which may be candidates for further consideration as possible aquatic contaminants. By consulting multiple sources of publicly available information in Canada, we identified current-use antimicrobials from the lists of sanitizers and surface disinfectants approved for use against SARS-CoV-2 by Health Canada and the drug registration database. To estimate the use of sanitizers and disinfectants, we evaluated import quantities and grocery store retail sales of related compounds and products (Statistics Canada) and both lines of evidence supported increased use trends. The list of identified antimicrobials was refined to include only candidates with potential to reach aquatic ecosystems, and information on their environmental concentrations and toxicity to aquatic biota were reviewed. Candidate antimicrobials (n=32) fell into four main categories: quaternary ammonium compounds (QACs), phenols, acids and salts. Benzalkonium chloride, a QAC, was the most prominent active ingredient used in both non-alcohol-based hand sanitizers and surface disinfectants. Four QACs followed in prevalence and the next most used antimicrobial was triclosan (hand sanitizers only), an established and regulated environmental contaminant. Little information was found on environmental concentrations of other candidates, suggesting that the majority would fall into the category of emerging contaminants if they enter aquatic systems. Several were classified as acutely or chronically toxic to aquatic biota (Globally Harmonised System) and thus we recommend empirical research begin focusing on environmental monitoring of all candidate antimicrobials as a critical next step, with detection method development first where needed.
期刊介绍:
Published since 1993, Environmental Reviews is a quarterly journal that presents authoritative literature reviews on a wide range of environmental science and associated environmental studies topics, with emphasis on the effects on and response of both natural and manmade ecosystems to anthropogenic stress. The authorship and scope are international, with critical literature reviews submitted and invited on such topics as sustainability, water supply management, climate change, harvesting impacts, acid rain, pesticide use, lake acidification, air and marine pollution, oil and gas development, biological control, food chain biomagnification, rehabilitation of polluted aquatic systems, erosion, forestry, bio-indicators of environmental stress, conservation of biodiversity, and many other environmental issues.