具有侧信息的两阶段线性规划的智能预测-然后优化

Alexander S. Estes, Jean-Philippe P. Richard
{"title":"具有侧信息的两阶段线性规划的智能预测-然后优化","authors":"Alexander S. Estes, Jean-Philippe P. Richard","doi":"10.1287/ijoo.2023.0088","DOIUrl":null,"url":null,"abstract":"We study two-stage linear programs with uncertainty in the right-hand side in which the uncertain parameters of the problem are correlated with a variable called the side information, which is observed before an action is made. We propose an approach in which a linear regression model is used to provide a point prediction for the uncertain parameters of the problem. We use an approach called smart predict-then-optimize. Rather than minimizing a typical loss function for regression, such as squared error, we approximately minimize the objective value of the resulting solutions to the optimization problem. We conduct computational tests that compare our method with other approaches for optimization problems with side information. The results indicate that our method can provide better objective values in situations where the true model is reasonably close to a linear model. Although the procedure we propose requires a longer time for fitting than existing methods, it requires less time to produce a decision for each given observation of the side information. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoo.2023.0088 .","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smart Predict-then-Optimize for Two-Stage Linear Programs with Side Information\",\"authors\":\"Alexander S. Estes, Jean-Philippe P. Richard\",\"doi\":\"10.1287/ijoo.2023.0088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study two-stage linear programs with uncertainty in the right-hand side in which the uncertain parameters of the problem are correlated with a variable called the side information, which is observed before an action is made. We propose an approach in which a linear regression model is used to provide a point prediction for the uncertain parameters of the problem. We use an approach called smart predict-then-optimize. Rather than minimizing a typical loss function for regression, such as squared error, we approximately minimize the objective value of the resulting solutions to the optimization problem. We conduct computational tests that compare our method with other approaches for optimization problems with side information. The results indicate that our method can provide better objective values in situations where the true model is reasonably close to a linear model. Although the procedure we propose requires a longer time for fitting than existing methods, it requires less time to produce a decision for each given observation of the side information. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoo.2023.0088 .\",\"PeriodicalId\":73382,\"journal\":{\"name\":\"INFORMS journal on optimization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS journal on optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/ijoo.2023.0088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2023.0088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了具有不确定性的两阶段线性规划,其中问题的不确定性参数与一个称为侧信息的变量相关,该变量在采取行动之前被观察到。我们提出了一种利用线性回归模型对问题的不确定参数进行点预测的方法。我们使用一种叫做智能预测-然后优化的方法。而不是最小化典型的回归损失函数,如平方误差,我们近似地最小化优化问题的结果解的目标值。我们进行计算测试,将我们的方法与其他方法进行比较,以解决带有侧信息的优化问题。结果表明,在真实模型与线性模型相当接近的情况下,我们的方法可以提供更好的客观值。虽然我们提出的程序需要比现有方法更长的拟合时间,但它需要更少的时间来对每个给定的边信息观察产生一个决定。补充材料:电子伴侣可在https://doi.org/10.1287/ijoo.2023.0088上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart Predict-then-Optimize for Two-Stage Linear Programs with Side Information
We study two-stage linear programs with uncertainty in the right-hand side in which the uncertain parameters of the problem are correlated with a variable called the side information, which is observed before an action is made. We propose an approach in which a linear regression model is used to provide a point prediction for the uncertain parameters of the problem. We use an approach called smart predict-then-optimize. Rather than minimizing a typical loss function for regression, such as squared error, we approximately minimize the objective value of the resulting solutions to the optimization problem. We conduct computational tests that compare our method with other approaches for optimization problems with side information. The results indicate that our method can provide better objective values in situations where the true model is reasonably close to a linear model. Although the procedure we propose requires a longer time for fitting than existing methods, it requires less time to produce a decision for each given observation of the side information. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoo.2023.0088 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1