两居群骆驼蓬金属修复能力的研究

K. Mahdavian
{"title":"两居群骆驼蓬金属修复能力的研究","authors":"K. Mahdavian","doi":"10.34172/ajehe.2022.03","DOIUrl":null,"url":null,"abstract":"The present study aimed to investigate the effects of zinc exposure (0, 1, 5, 15, 30 mg/L zinc) on the biochemical and physiological parameters of Peganum harmala seedlings. Two populations (metallicolous and non-metallicolous) were compared in Zn tolerance, Zn accumulation, photosynthetic pigments, and enzymatic antioxidant activities. Plants were treated with Zn at concentrations of 0, 1, 5, 15, and 30 mg/L for 14 days. The study results showed that the increase of Zn concentration in the nutrient solution reduced shoot length, root length, root dry weight, shoot dry weight, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid in both populations; however, the accumulation was more pronounced in metallicolous populations (M) than in non-metallicolous (NM) ones. In response, the activities of antioxidant enzymes such as guaiacol peroxidase, lipoxygenase, superoxide dismutase, catalase, and ascorbate peroxidase were enhanced Zn exposure in both populations. Moreover, it was found that the metallicolous population of P. harmala had a greater capacity to adapt to oxidative stress caused by Zn than the non-metallicolous population, and antioxidative defense in the metallicolous population of P. harmala might have played an essential role in Zn tolerance. Therefore, P. harmala seemed to be a suitable candidate for accumulation; however, it was recommended that further investigations be carried out to explore its metal remediation ability. It is concluded that P. harmala can be a potential candidate for bioremediation of Zn contaminated soils.","PeriodicalId":8672,"journal":{"name":"Avicenna Journal of Environmental Health Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of the Metal Bioremediation Ability of Two Populations of Peganum Harmala\",\"authors\":\"K. Mahdavian\",\"doi\":\"10.34172/ajehe.2022.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study aimed to investigate the effects of zinc exposure (0, 1, 5, 15, 30 mg/L zinc) on the biochemical and physiological parameters of Peganum harmala seedlings. Two populations (metallicolous and non-metallicolous) were compared in Zn tolerance, Zn accumulation, photosynthetic pigments, and enzymatic antioxidant activities. Plants were treated with Zn at concentrations of 0, 1, 5, 15, and 30 mg/L for 14 days. The study results showed that the increase of Zn concentration in the nutrient solution reduced shoot length, root length, root dry weight, shoot dry weight, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid in both populations; however, the accumulation was more pronounced in metallicolous populations (M) than in non-metallicolous (NM) ones. In response, the activities of antioxidant enzymes such as guaiacol peroxidase, lipoxygenase, superoxide dismutase, catalase, and ascorbate peroxidase were enhanced Zn exposure in both populations. Moreover, it was found that the metallicolous population of P. harmala had a greater capacity to adapt to oxidative stress caused by Zn than the non-metallicolous population, and antioxidative defense in the metallicolous population of P. harmala might have played an essential role in Zn tolerance. Therefore, P. harmala seemed to be a suitable candidate for accumulation; however, it was recommended that further investigations be carried out to explore its metal remediation ability. It is concluded that P. harmala can be a potential candidate for bioremediation of Zn contaminated soils.\",\"PeriodicalId\":8672,\"journal\":{\"name\":\"Avicenna Journal of Environmental Health Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avicenna Journal of Environmental Health Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/ajehe.2022.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Environmental Health Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/ajehe.2022.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在研究锌(0、1、5、15、30mg/L锌)对骆驼蓬幼苗生化和生理参数的影响。比较了两个群体(含金属和非含金属)的锌耐受性、锌积累、光合色素和酶抗氧化活性。用浓度为0、1、5、15和30mg/L的锌处理植物14天。研究结果表明,营养液中锌浓度的增加降低了两个群体的地上部长度、根系长度、根系干重、地上部干重、叶绿素a、叶绿素b、总叶绿素和类胡萝卜素;然而,金属种群(M)中的积累比非金属种群(NM)中的更明显。作为回应,抗氧化酶如愈创木酚过氧化物酶、脂氧合酶、超氧化物歧化酶、过氧化氢酶和抗坏血酸过氧化物酶的活性在两个群体中都增强了锌暴露。此外,研究发现,与非金属种群相比,骆驼蓬的金属种群具有更大的适应锌引起的氧化应激的能力,骆驼蓬金属种群的抗氧化防御可能在锌耐受中发挥了重要作用。因此,骆驼蓬似乎是一个适合积累的候选者;然而,建议进行进一步的研究,以探索其金属修复能力。结果表明,骆驼蓬是一种潜在的锌污染土壤生物修复候选植物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Metal Bioremediation Ability of Two Populations of Peganum Harmala
The present study aimed to investigate the effects of zinc exposure (0, 1, 5, 15, 30 mg/L zinc) on the biochemical and physiological parameters of Peganum harmala seedlings. Two populations (metallicolous and non-metallicolous) were compared in Zn tolerance, Zn accumulation, photosynthetic pigments, and enzymatic antioxidant activities. Plants were treated with Zn at concentrations of 0, 1, 5, 15, and 30 mg/L for 14 days. The study results showed that the increase of Zn concentration in the nutrient solution reduced shoot length, root length, root dry weight, shoot dry weight, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid in both populations; however, the accumulation was more pronounced in metallicolous populations (M) than in non-metallicolous (NM) ones. In response, the activities of antioxidant enzymes such as guaiacol peroxidase, lipoxygenase, superoxide dismutase, catalase, and ascorbate peroxidase were enhanced Zn exposure in both populations. Moreover, it was found that the metallicolous population of P. harmala had a greater capacity to adapt to oxidative stress caused by Zn than the non-metallicolous population, and antioxidative defense in the metallicolous population of P. harmala might have played an essential role in Zn tolerance. Therefore, P. harmala seemed to be a suitable candidate for accumulation; however, it was recommended that further investigations be carried out to explore its metal remediation ability. It is concluded that P. harmala can be a potential candidate for bioremediation of Zn contaminated soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Avicenna Journal of Environmental Health Engineering
Avicenna Journal of Environmental Health Engineering Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
1.00
自引率
0.00%
发文量
8
审稿时长
8 weeks
期刊最新文献
Predictive Modeling for Forecasting Air Quality Index (AQI) Using Time Series Analysis The Removal of Methylene Blue from Aqueous Solutions Using Zinc Oxide Nanoparticles With Hydrogen Peroxide Optimization and Isothermal Studies of Antibiotics Mixture Biosorption From Wastewater Using Palm Kernel, Chrysophyllum albidum, and Coconut Shells Biocomposite The Burden of Diseases From Exposure to Environmental Cigarette Smoke: A Case Study of Municipal Staff in Qazvin, Iran Spatial Distribution of Lead in the Soil of Urban Areas Under Different Land-Use Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1