激光加工作为一种清洁方法获得具有良好附着力的表面的可能性的实验研究

IF 1.9 Q3 ENGINEERING, INDUSTRIAL Production Engineering Archives Pub Date : 2022-08-05 DOI:10.30657/pea.2022.28.28
B. Ciecińska
{"title":"激光加工作为一种清洁方法获得具有良好附着力的表面的可能性的实验研究","authors":"B. Ciecińska","doi":"10.30657/pea.2022.28.28","DOIUrl":null,"url":null,"abstract":"Abstract In manufacturing processes many technological operations are designed, in which the adhesive properties of the treated surface are very important. These are processes related to application of any coating on the surface, such as gluing, painting, varnishing and others. Durability of coatings depends on proper preparation of the surface to which they are going to be applied. Conventional methods, such as grinding, sandblasting with subsequent washing and degreasing, as well as galvanic treatment applied to e.g. aluminium alloys - require the use of not only specific equipment but also chemical substances. They often lead to a significant burden on the environment due to their harmful properties. In an experimental study, attention was drawn to the significant environmental aspects of such a technological process and work was carried out to demonstrate whether it is possible to eliminate toxic and hazardous substances and to create good adhesion conditions by laser processing. To this purpose, samples were made out of two representative materials: X6Cr17 steel and AW-2024 aluminium alloy, abrasive surface treatment or in a galvanic bath and then washed, degreased and dried. Laser surface treatment without the use of additional chemicals was proposed as an environmentally cleaner technology. Surface roughness and adhesion of the test polymer coating were measured for comparative evaluation of the applied treatment methods. Obtained results were discussed in terms of the possibility of eliminating harmful influences and implementing laser treatment as a cleaner technology in the production of components requiring coating.","PeriodicalId":36269,"journal":{"name":"Production Engineering Archives","volume":"28 1","pages":"233 - 240"},"PeriodicalIF":1.9000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental studies of the possibility of laser processing as a cleaner method of achieving a surface with good adhesion\",\"authors\":\"B. Ciecińska\",\"doi\":\"10.30657/pea.2022.28.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In manufacturing processes many technological operations are designed, in which the adhesive properties of the treated surface are very important. These are processes related to application of any coating on the surface, such as gluing, painting, varnishing and others. Durability of coatings depends on proper preparation of the surface to which they are going to be applied. Conventional methods, such as grinding, sandblasting with subsequent washing and degreasing, as well as galvanic treatment applied to e.g. aluminium alloys - require the use of not only specific equipment but also chemical substances. They often lead to a significant burden on the environment due to their harmful properties. In an experimental study, attention was drawn to the significant environmental aspects of such a technological process and work was carried out to demonstrate whether it is possible to eliminate toxic and hazardous substances and to create good adhesion conditions by laser processing. To this purpose, samples were made out of two representative materials: X6Cr17 steel and AW-2024 aluminium alloy, abrasive surface treatment or in a galvanic bath and then washed, degreased and dried. Laser surface treatment without the use of additional chemicals was proposed as an environmentally cleaner technology. Surface roughness and adhesion of the test polymer coating were measured for comparative evaluation of the applied treatment methods. Obtained results were discussed in terms of the possibility of eliminating harmful influences and implementing laser treatment as a cleaner technology in the production of components requiring coating.\",\"PeriodicalId\":36269,\"journal\":{\"name\":\"Production Engineering Archives\",\"volume\":\"28 1\",\"pages\":\"233 - 240\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Production Engineering Archives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30657/pea.2022.28.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Production Engineering Archives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30657/pea.2022.28.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要在制造过程中,设计了许多工艺操作,其中处理表面的粘合性能非常重要。这些都是与表面任何涂层的应用有关的过程,如胶合、涂漆、上光等。涂层的耐久性取决于涂层表面的正确处理。传统方法,如研磨、喷砂以及随后的清洗和脱脂,以及对铝合金进行电镀处理,不仅需要使用特定的设备,还需要使用化学物质。由于其有害特性,它们往往会给环境带来重大负担。在一项实验研究中,人们注意到了这种技术过程的重要环境方面,并进行了工作,以证明是否有可能通过激光加工消除有毒有害物质并创造良好的粘合条件。为此,样品由两种具有代表性的材料制成:X6Cr17钢和AW-2024铝合金,经过研磨表面处理或在电镀浴中进行处理,然后清洗、脱脂和干燥。激光表面处理不使用额外的化学物质被提议作为一种环境清洁技术。测量测试聚合物涂层的表面粗糙度和附着力,以对所应用的处理方法进行比较评估。讨论了在生产需要涂层的部件时消除有害影响和将激光处理作为一种清洁技术的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental studies of the possibility of laser processing as a cleaner method of achieving a surface with good adhesion
Abstract In manufacturing processes many technological operations are designed, in which the adhesive properties of the treated surface are very important. These are processes related to application of any coating on the surface, such as gluing, painting, varnishing and others. Durability of coatings depends on proper preparation of the surface to which they are going to be applied. Conventional methods, such as grinding, sandblasting with subsequent washing and degreasing, as well as galvanic treatment applied to e.g. aluminium alloys - require the use of not only specific equipment but also chemical substances. They often lead to a significant burden on the environment due to their harmful properties. In an experimental study, attention was drawn to the significant environmental aspects of such a technological process and work was carried out to demonstrate whether it is possible to eliminate toxic and hazardous substances and to create good adhesion conditions by laser processing. To this purpose, samples were made out of two representative materials: X6Cr17 steel and AW-2024 aluminium alloy, abrasive surface treatment or in a galvanic bath and then washed, degreased and dried. Laser surface treatment without the use of additional chemicals was proposed as an environmentally cleaner technology. Surface roughness and adhesion of the test polymer coating were measured for comparative evaluation of the applied treatment methods. Obtained results were discussed in terms of the possibility of eliminating harmful influences and implementing laser treatment as a cleaner technology in the production of components requiring coating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Production Engineering Archives
Production Engineering Archives Engineering-Industrial and Manufacturing Engineering
CiteScore
6.10
自引率
13.00%
发文量
50
审稿时长
6 weeks
期刊最新文献
Shallot Price Forecasting Models: Comparison among Various Techniques Framework for Increasing Eco-efficiency in the Tofu Production Process: Circular Economy Approach Diagnostic methods and ways of testing the workability of coal - a review Company Cybersecurity System: Assessment, Risks and Expectations Experimental-numerical analysis of the fracture process in smooth and notched V specimens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1