{"title":"紫杉醇纳米药物在口腔鳞状细胞癌组织中的检测、递送和保留","authors":"Fengping Mou, Li Xiao, Yuanqin Xu","doi":"10.1166/NNL.2020.3196","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the therapeutic effect of a paclitaxel-loaded nano-drug (PTX-mPEGPLA) on oral squamous cell carcinoma (OSCC). PTX-mPEG-PLA nanoparticle (NP) was prepared by loading paclitaxel into the mPEG-PLA nanoparticle and purified by a thin-film hydration method.\n C57BL/6 mice were used to establish a murine OSCC model. The mice were treated with saline control (G1), paclitaxel (G2), or PTX-mPEG-PLA NPs (G3). After 4 weeks of differential treatment, the saliva of mice in the G1, G2, and G3 groups was collected to detect the concentration of protein\n markers of OSCC. Also, venous blood and cancer tissues of mice in the three groups were collected for drug concentration measurements. The paclitaxel concentration and retention in G3 mice were significantly higher and more prolonged than those in G2 mice, respectively (P < 0.05).\n Compared to the level of OSCC protein markers in the saliva of mice in G1 and G2 that in G3 was the lowest. PTX-mPEG-PLA NPs demonstrates effective targeting in the treatment of oral squamous cell carcinoma in mice. It can deliver the drug to the cancerous tissues, increase the drug retention\n in the same tissues, and effectively inhibit the proliferation and metastasis of malignant tumors.","PeriodicalId":18871,"journal":{"name":"Nanoscience and Nanotechnology Letters","volume":"12 1","pages":"946-952"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining and Delivery and Retention of a Paclitaxel Nano-Drug in Oral Squamous Cell Carcinoma Tissues\",\"authors\":\"Fengping Mou, Li Xiao, Yuanqin Xu\",\"doi\":\"10.1166/NNL.2020.3196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate the therapeutic effect of a paclitaxel-loaded nano-drug (PTX-mPEGPLA) on oral squamous cell carcinoma (OSCC). PTX-mPEG-PLA nanoparticle (NP) was prepared by loading paclitaxel into the mPEG-PLA nanoparticle and purified by a thin-film hydration method.\\n C57BL/6 mice were used to establish a murine OSCC model. The mice were treated with saline control (G1), paclitaxel (G2), or PTX-mPEG-PLA NPs (G3). After 4 weeks of differential treatment, the saliva of mice in the G1, G2, and G3 groups was collected to detect the concentration of protein\\n markers of OSCC. Also, venous blood and cancer tissues of mice in the three groups were collected for drug concentration measurements. The paclitaxel concentration and retention in G3 mice were significantly higher and more prolonged than those in G2 mice, respectively (P < 0.05).\\n Compared to the level of OSCC protein markers in the saliva of mice in G1 and G2 that in G3 was the lowest. PTX-mPEG-PLA NPs demonstrates effective targeting in the treatment of oral squamous cell carcinoma in mice. It can deliver the drug to the cancerous tissues, increase the drug retention\\n in the same tissues, and effectively inhibit the proliferation and metastasis of malignant tumors.\",\"PeriodicalId\":18871,\"journal\":{\"name\":\"Nanoscience and Nanotechnology Letters\",\"volume\":\"12 1\",\"pages\":\"946-952\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/NNL.2020.3196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/NNL.2020.3196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Examining and Delivery and Retention of a Paclitaxel Nano-Drug in Oral Squamous Cell Carcinoma Tissues
This study aims to investigate the therapeutic effect of a paclitaxel-loaded nano-drug (PTX-mPEGPLA) on oral squamous cell carcinoma (OSCC). PTX-mPEG-PLA nanoparticle (NP) was prepared by loading paclitaxel into the mPEG-PLA nanoparticle and purified by a thin-film hydration method.
C57BL/6 mice were used to establish a murine OSCC model. The mice were treated with saline control (G1), paclitaxel (G2), or PTX-mPEG-PLA NPs (G3). After 4 weeks of differential treatment, the saliva of mice in the G1, G2, and G3 groups was collected to detect the concentration of protein
markers of OSCC. Also, venous blood and cancer tissues of mice in the three groups were collected for drug concentration measurements. The paclitaxel concentration and retention in G3 mice were significantly higher and more prolonged than those in G2 mice, respectively (P < 0.05).
Compared to the level of OSCC protein markers in the saliva of mice in G1 and G2 that in G3 was the lowest. PTX-mPEG-PLA NPs demonstrates effective targeting in the treatment of oral squamous cell carcinoma in mice. It can deliver the drug to the cancerous tissues, increase the drug retention
in the same tissues, and effectively inhibit the proliferation and metastasis of malignant tumors.