β回归模型中变量选择的粒子群优化方法

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2019-10-14 DOI:10.1285/I20705948V12N2P508
Z. Algamal
{"title":"β回归模型中变量选择的粒子群优化方法","authors":"Z. Algamal","doi":"10.1285/I20705948V12N2P508","DOIUrl":null,"url":null,"abstract":"Beta regression model has received much attention in several science fields in modeling proportions or rates data. Selecting a small subset of relevant variables from a large number of variables is an important task for building a predictive regression model. This paper proposes employing the particle swarm optimization algorithm as a variable selection method in the beta regression model with varying dispersion. The performance of the proposed method is evaluated through simulation and real data application. Results demonstrate the superiority of the proposed method compared to other competitor methods including corrected Akaike information criterion, corrected Schwarz information criterion, and corrected Hannan and Quinn criterion. Thus, the proposed method can efficiently helpful as a variable selection tool in the beta regression model with varying dispersion.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"508-519"},"PeriodicalIF":0.6000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N2P508","citationCount":"4","resultStr":"{\"title\":\"A particle swarm optimization method for variable selection in beta regression model\",\"authors\":\"Z. Algamal\",\"doi\":\"10.1285/I20705948V12N2P508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beta regression model has received much attention in several science fields in modeling proportions or rates data. Selecting a small subset of relevant variables from a large number of variables is an important task for building a predictive regression model. This paper proposes employing the particle swarm optimization algorithm as a variable selection method in the beta regression model with varying dispersion. The performance of the proposed method is evaluated through simulation and real data application. Results demonstrate the superiority of the proposed method compared to other competitor methods including corrected Akaike information criterion, corrected Schwarz information criterion, and corrected Hannan and Quinn criterion. Thus, the proposed method can efficiently helpful as a variable selection tool in the beta regression model with varying dispersion.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"12 1\",\"pages\":\"508-519\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1285/I20705948V12N2P508\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V12N2P508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N2P508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

贝塔回归模型在建模比例或比率数据方面受到了多个科学领域的广泛关注。从大量变量中选择相关变量的子集是构建预测回归模型的重要任务。本文提出将粒子群优化算法作为变离散贝塔回归模型的变量选择方法。通过仿真和实际数据应用对该方法的性能进行了评价。结果表明,与其他竞争对手的方法(包括修正的Akaike信息准则、修正的Schwarz信息准则以及修正的Hannan和Quinn准则)相比,该方法具有优越性。因此,所提出的方法可以有效地作为具有不同离散度的贝塔回归模型中的变量选择工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A particle swarm optimization method for variable selection in beta regression model
Beta regression model has received much attention in several science fields in modeling proportions or rates data. Selecting a small subset of relevant variables from a large number of variables is an important task for building a predictive regression model. This paper proposes employing the particle swarm optimization algorithm as a variable selection method in the beta regression model with varying dispersion. The performance of the proposed method is evaluated through simulation and real data application. Results demonstrate the superiority of the proposed method compared to other competitor methods including corrected Akaike information criterion, corrected Schwarz information criterion, and corrected Hannan and Quinn criterion. Thus, the proposed method can efficiently helpful as a variable selection tool in the beta regression model with varying dispersion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1