{"title":"指数分布下应力-强度可靠性参数的最小风险序贯点估计","authors":"E. Mahmoudi, Ashkan Khalifeh, V. Nekoukhou","doi":"10.1080/07474946.2019.1649347","DOIUrl":null,"url":null,"abstract":"Abstract In this article, using purely and two-stage sequential procedures, the problem of minimum risk point estimation of the reliability parameter (R) under the stress–strength model, in case the loss function is squared error plus sampling cost, is considered when the random stress (X) and the random strength (Y) are independent and both have exponential distributions with different scale parameters. The exact distribution of the total sample size and explicit formulas for the expected value and mean squared error of the maximum likelihood estimator of the reliability parameter under the stress–strength model are provided under the two-stage sequential procedure. Using the law of large numbers and Monte Carlo integration, the exact distribution of the stopping rule under the purely sequential procedure is approximated. Moreover, it is shown that both proposed sequential procedures are finite and for special cases the exact distribution of stopping times has a degenerate distribution at the initial sample size. The performances of the proposed methodologies are investigated with the help of simulations. Finally, using a real data set, the procedures are clearly illustrated.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2019.1649347","citationCount":"10","resultStr":"{\"title\":\"Minimum risk sequential point estimation of the stress-strength reliability parameter for exponential distribution\",\"authors\":\"E. Mahmoudi, Ashkan Khalifeh, V. Nekoukhou\",\"doi\":\"10.1080/07474946.2019.1649347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, using purely and two-stage sequential procedures, the problem of minimum risk point estimation of the reliability parameter (R) under the stress–strength model, in case the loss function is squared error plus sampling cost, is considered when the random stress (X) and the random strength (Y) are independent and both have exponential distributions with different scale parameters. The exact distribution of the total sample size and explicit formulas for the expected value and mean squared error of the maximum likelihood estimator of the reliability parameter under the stress–strength model are provided under the two-stage sequential procedure. Using the law of large numbers and Monte Carlo integration, the exact distribution of the stopping rule under the purely sequential procedure is approximated. Moreover, it is shown that both proposed sequential procedures are finite and for special cases the exact distribution of stopping times has a degenerate distribution at the initial sample size. The performances of the proposed methodologies are investigated with the help of simulations. Finally, using a real data set, the procedures are clearly illustrated.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474946.2019.1649347\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2019.1649347\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2019.1649347","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Minimum risk sequential point estimation of the stress-strength reliability parameter for exponential distribution
Abstract In this article, using purely and two-stage sequential procedures, the problem of minimum risk point estimation of the reliability parameter (R) under the stress–strength model, in case the loss function is squared error plus sampling cost, is considered when the random stress (X) and the random strength (Y) are independent and both have exponential distributions with different scale parameters. The exact distribution of the total sample size and explicit formulas for the expected value and mean squared error of the maximum likelihood estimator of the reliability parameter under the stress–strength model are provided under the two-stage sequential procedure. Using the law of large numbers and Monte Carlo integration, the exact distribution of the stopping rule under the purely sequential procedure is approximated. Moreover, it is shown that both proposed sequential procedures are finite and for special cases the exact distribution of stopping times has a degenerate distribution at the initial sample size. The performances of the proposed methodologies are investigated with the help of simulations. Finally, using a real data set, the procedures are clearly illustrated.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.