M. R. Noor El-Din, A. I. Hashem, R. E. Morsi, A. Abd El-Azeim, Reham H. Mohamed
{"title":"纳米乳液聚合技术制备超疏水纳米复合涂层材料及其在石油碳素钢管道防护中的应用","authors":"M. R. Noor El-Din, A. I. Hashem, R. E. Morsi, A. Abd El-Azeim, Reham H. Mohamed","doi":"10.1007/s11998-022-00669-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to fabricate new superhydrophobic nanocomposite coating materials to protect the inner surfaces of the petroleum pipelines from corrosion. The batch emulsification polymerization technique (BEM) was used as a facial eco-friendly technique to prepare three hydrophobic (styrene/vinyl acetate) copolymers. The sol–gel method was used to prepare SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>-NPs) with average size ranging from 90 to 101 nm. The functionalized SiO<sub>2</sub>-NPs were prepared using hexadecyl trimethoxy silane (HDTS) as a precursor to increasing the hydrophobicity character of the unfunctionalized SiO<sub>2</sub>-NPs. Three superhydrophobic [(styrene/vinyl acetate copolymer/functionalized SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>NPs)] nanocomposites denoted as M1, M3, and M5 were fabricated by incorporating 1, 3, and 5 wt% of the functionalized-SiO<sub>2</sub>NPs into the styrene/vinyl acetate copolymer, respectively. The effectiveness of the fabricated nanocomposite coating materials was analyzed using contact angle measurement and transmission electron and atomic force microscopies. The results showed that the highest contact angle of 161.21<sup>o</sup> was obtained by M5-nanocomposite. The highest corrosion efficiency of 99.63% was obtained at 300 ppm concentration of M5-nanocomposite-coated solution, 298 K, and 24 days.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"20 1","pages":"291 - 305"},"PeriodicalIF":2.3000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-022-00669-z.pdf","citationCount":"2","resultStr":"{\"title\":\"Facile fabrication of superhydrophobic nanocomposites coating materials using nanoemulsion polymerization technique and its application for protecting the petroleum carbon steel pipelines\",\"authors\":\"M. R. Noor El-Din, A. I. Hashem, R. E. Morsi, A. Abd El-Azeim, Reham H. Mohamed\",\"doi\":\"10.1007/s11998-022-00669-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims to fabricate new superhydrophobic nanocomposite coating materials to protect the inner surfaces of the petroleum pipelines from corrosion. The batch emulsification polymerization technique (BEM) was used as a facial eco-friendly technique to prepare three hydrophobic (styrene/vinyl acetate) copolymers. The sol–gel method was used to prepare SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>-NPs) with average size ranging from 90 to 101 nm. The functionalized SiO<sub>2</sub>-NPs were prepared using hexadecyl trimethoxy silane (HDTS) as a precursor to increasing the hydrophobicity character of the unfunctionalized SiO<sub>2</sub>-NPs. Three superhydrophobic [(styrene/vinyl acetate copolymer/functionalized SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>NPs)] nanocomposites denoted as M1, M3, and M5 were fabricated by incorporating 1, 3, and 5 wt% of the functionalized-SiO<sub>2</sub>NPs into the styrene/vinyl acetate copolymer, respectively. The effectiveness of the fabricated nanocomposite coating materials was analyzed using contact angle measurement and transmission electron and atomic force microscopies. The results showed that the highest contact angle of 161.21<sup>o</sup> was obtained by M5-nanocomposite. The highest corrosion efficiency of 99.63% was obtained at 300 ppm concentration of M5-nanocomposite-coated solution, 298 K, and 24 days.</p></div>\",\"PeriodicalId\":48804,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"20 1\",\"pages\":\"291 - 305\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11998-022-00669-z.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-022-00669-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-022-00669-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Facile fabrication of superhydrophobic nanocomposites coating materials using nanoemulsion polymerization technique and its application for protecting the petroleum carbon steel pipelines
This paper aims to fabricate new superhydrophobic nanocomposite coating materials to protect the inner surfaces of the petroleum pipelines from corrosion. The batch emulsification polymerization technique (BEM) was used as a facial eco-friendly technique to prepare three hydrophobic (styrene/vinyl acetate) copolymers. The sol–gel method was used to prepare SiO2 nanoparticles (SiO2-NPs) with average size ranging from 90 to 101 nm. The functionalized SiO2-NPs were prepared using hexadecyl trimethoxy silane (HDTS) as a precursor to increasing the hydrophobicity character of the unfunctionalized SiO2-NPs. Three superhydrophobic [(styrene/vinyl acetate copolymer/functionalized SiO2 nanoparticles (SiO2NPs)] nanocomposites denoted as M1, M3, and M5 were fabricated by incorporating 1, 3, and 5 wt% of the functionalized-SiO2NPs into the styrene/vinyl acetate copolymer, respectively. The effectiveness of the fabricated nanocomposite coating materials was analyzed using contact angle measurement and transmission electron and atomic force microscopies. The results showed that the highest contact angle of 161.21o was obtained by M5-nanocomposite. The highest corrosion efficiency of 99.63% was obtained at 300 ppm concentration of M5-nanocomposite-coated solution, 298 K, and 24 days.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.