基于多元逐步回归分析的织物瞬时冷却感觉评价模型

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Engineered Fibers and Fabrics Pub Date : 2023-01-01 DOI:10.1177/15589250221144014
Xuemei Li, Shanghui Wang, Yanqing Li, Xiaoke Jin, Leilei Ma, W. Tian, Chengyan Zhu
{"title":"基于多元逐步回归分析的织物瞬时冷却感觉评价模型","authors":"Xuemei Li, Shanghui Wang, Yanqing Li, Xiaoke Jin, Leilei Ma, W. Tian, Chengyan Zhu","doi":"10.1177/15589250221144014","DOIUrl":null,"url":null,"abstract":"In this paper, according to the one-dimensional heat transfer mechanism between fabric and human body, it is found that different thermal properties affect different heat transfer stages of fabric. Therefore, we used the maximum heat flux qmax as the index to characterize the transient contact cool feeling of fabrics, and measured the thermal properties, various specifications and surface morphology of 40 kinds of summer fabrics. Firstly, we discussed the influence of the above properties on the transient cool feeling. Secondly, according to multivariate stepwise regression, the significant representative variables are selected, and the prediction model of transient coolness and fabric properties is established. Furthermore, the model was verified to explore the subjective and objective consistency. The results show that, in the transient heat transfer stage, the influencing factors that are significantly related to the cool feeling of fabric include fabric thickness, grammage, volumetric heat capacity, thermal conductivity, warp and weft density, and roughness. The main component representative variables of the cooling sensation regression equation are volumetric heat capacity and thickness, and other variables can be explained by these two variables. Changing them is the key to enhance the cooling sensation. The predicted value of coolness is in good agreement with the subjective evaluation of cooling sensation, which has a certain guiding effect on the actual human cool feeling. The purpose of this study is to find out the main factors that affect the cool feeling, and then apply the established cool feeling model to the development of fabrics in summer, so as to meet the thermal comfort requirements of human body’s fabrics.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation model of fabric transient cooling sensation based on multiple stepwise regression analysis\",\"authors\":\"Xuemei Li, Shanghui Wang, Yanqing Li, Xiaoke Jin, Leilei Ma, W. Tian, Chengyan Zhu\",\"doi\":\"10.1177/15589250221144014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, according to the one-dimensional heat transfer mechanism between fabric and human body, it is found that different thermal properties affect different heat transfer stages of fabric. Therefore, we used the maximum heat flux qmax as the index to characterize the transient contact cool feeling of fabrics, and measured the thermal properties, various specifications and surface morphology of 40 kinds of summer fabrics. Firstly, we discussed the influence of the above properties on the transient cool feeling. Secondly, according to multivariate stepwise regression, the significant representative variables are selected, and the prediction model of transient coolness and fabric properties is established. Furthermore, the model was verified to explore the subjective and objective consistency. The results show that, in the transient heat transfer stage, the influencing factors that are significantly related to the cool feeling of fabric include fabric thickness, grammage, volumetric heat capacity, thermal conductivity, warp and weft density, and roughness. The main component representative variables of the cooling sensation regression equation are volumetric heat capacity and thickness, and other variables can be explained by these two variables. Changing them is the key to enhance the cooling sensation. The predicted value of coolness is in good agreement with the subjective evaluation of cooling sensation, which has a certain guiding effect on the actual human cool feeling. The purpose of this study is to find out the main factors that affect the cool feeling, and then apply the established cool feeling model to the development of fabrics in summer, so as to meet the thermal comfort requirements of human body’s fabrics.\",\"PeriodicalId\":15718,\"journal\":{\"name\":\"Journal of Engineered Fibers and Fabrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineered Fibers and Fabrics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15589250221144014\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250221144014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 2

摘要

本文根据织物与人体之间的一维传热机理,发现不同的热性能影响织物的不同传热阶段。因此,我们以最大热通量qmax为指标来表征织物的瞬时接触凉爽感,并测量了40种夏季织物的热性能、各种规格和表面形态。首先,我们讨论了上述性质对瞬态凉爽感的影响。其次,采用多元逐步回归方法,选取具有显著代表性的变量,建立了织物瞬时凉爽度和织物性能的预测模型。此外,对模型进行了验证,以探索主观与客观的一致性。结果表明,在瞬态传热阶段,与织物凉爽感显著相关的影响因素包括织物厚度、克重、体积热容、热导率、经纬密度和粗糙度。冷却感回归方程的主要组成代表变量是体积热容和厚度,其他变量可以用这两个变量来解释。更换它们是增强凉爽感的关键。凉爽度的预测值与凉爽感的主观评价非常吻合,对人体的实际凉爽感有一定的指导作用。本研究的目的是找出影响凉爽感的主要因素,然后将建立的凉爽感模型应用于夏季织物的开发,以满足人体织物的热舒适性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation model of fabric transient cooling sensation based on multiple stepwise regression analysis
In this paper, according to the one-dimensional heat transfer mechanism between fabric and human body, it is found that different thermal properties affect different heat transfer stages of fabric. Therefore, we used the maximum heat flux qmax as the index to characterize the transient contact cool feeling of fabrics, and measured the thermal properties, various specifications and surface morphology of 40 kinds of summer fabrics. Firstly, we discussed the influence of the above properties on the transient cool feeling. Secondly, according to multivariate stepwise regression, the significant representative variables are selected, and the prediction model of transient coolness and fabric properties is established. Furthermore, the model was verified to explore the subjective and objective consistency. The results show that, in the transient heat transfer stage, the influencing factors that are significantly related to the cool feeling of fabric include fabric thickness, grammage, volumetric heat capacity, thermal conductivity, warp and weft density, and roughness. The main component representative variables of the cooling sensation regression equation are volumetric heat capacity and thickness, and other variables can be explained by these two variables. Changing them is the key to enhance the cooling sensation. The predicted value of coolness is in good agreement with the subjective evaluation of cooling sensation, which has a certain guiding effect on the actual human cool feeling. The purpose of this study is to find out the main factors that affect the cool feeling, and then apply the established cool feeling model to the development of fabrics in summer, so as to meet the thermal comfort requirements of human body’s fabrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and Fabrics 工程技术-材料科学:纺织
CiteScore
5.00
自引率
6.90%
发文量
41
审稿时长
4 months
期刊介绍: Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.
期刊最新文献
Analysis and modeling for the dynamics of the nipper mechanism considering jaw’s impacts Effect of sizing agents on tensile properties of carbon fiber filament wound structures Research on the function of single jersey based on the 3D channel structure Study on thermal comfort of aloe viscose seamless knits Effects of inter-yarn friction on responses of woven fabrics with different weaves to a low-velocity impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1