Assessing葡萄园蛀虫公会入侵的风险

IF 3.8 2区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Neobiota Pub Date : 2023-07-20 DOI:10.3897/neobiota.86.100579
Héctor Zumbado‐Ulate, T. Schartel, G. Simmons, M. Daugherty
{"title":"Assessing葡萄园蛀虫公会入侵的风险","authors":"Héctor Zumbado‐Ulate, T. Schartel, G. Simmons, M. Daugherty","doi":"10.3897/neobiota.86.100579","DOIUrl":null,"url":null,"abstract":"Biological invasions are most effectively managed when identified in their early stages, which often hinges on robust surveillance programs. The recent invasion of the European grapevine moth (Lobesia botrana) in California suggests that viticultural areas in the western United States may face severe economic consequences from this and other Tortricid and Pyralid moth species if they were to establish. To gain insights into the risk these grapevine pests pose, we used occurrence records for L. botrana and four other moths native to Europe or the eastern United States and selected environmental variables to predict the extent of climatically suitable areas and potential pest co-occurrence along the West Coast of the United States. A suite of models was generated using MaxEnt with species-specific tuning of model settings. Overall, the results confirmed high suitability for L. botrana to establish across much of the study region, driven largely by high monthly variability in precipitation and low elevation. Two species were predicted to have intermediate suitability to establish over the study region (i.e., grape tortrix moth, Argyrotaenia ljungiana; grape berry moth, Paralobesia viteana), while two others had low suitability (i.e., European grape berry moth, Eupoecilia ambiguella; Christmas berry webworm, Cryptoblabes gnidiella). The highest predicted potential for co-occurrence was between L. botrana and P. viteana, accounting for 19% of the total viticulture area, followed by L. botrana and A. ljungiana for 11% of the study area. These results may help with the optimization of surveillance efforts by indicating which species or areas should be prioritized for the deployment of invasive pest detection programs with pheromone traps. Indeed, given the apparent potential for co-occurrence of multiple moth pests in certain areas, our results may inform where single or multi-lure traps should be deployed as a more cost-efficient monitoring tool.","PeriodicalId":54290,"journal":{"name":"Neobiota","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the risk of invasion by a vineyard moth pest guild\",\"authors\":\"Héctor Zumbado‐Ulate, T. Schartel, G. Simmons, M. Daugherty\",\"doi\":\"10.3897/neobiota.86.100579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological invasions are most effectively managed when identified in their early stages, which often hinges on robust surveillance programs. The recent invasion of the European grapevine moth (Lobesia botrana) in California suggests that viticultural areas in the western United States may face severe economic consequences from this and other Tortricid and Pyralid moth species if they were to establish. To gain insights into the risk these grapevine pests pose, we used occurrence records for L. botrana and four other moths native to Europe or the eastern United States and selected environmental variables to predict the extent of climatically suitable areas and potential pest co-occurrence along the West Coast of the United States. A suite of models was generated using MaxEnt with species-specific tuning of model settings. Overall, the results confirmed high suitability for L. botrana to establish across much of the study region, driven largely by high monthly variability in precipitation and low elevation. Two species were predicted to have intermediate suitability to establish over the study region (i.e., grape tortrix moth, Argyrotaenia ljungiana; grape berry moth, Paralobesia viteana), while two others had low suitability (i.e., European grape berry moth, Eupoecilia ambiguella; Christmas berry webworm, Cryptoblabes gnidiella). The highest predicted potential for co-occurrence was between L. botrana and P. viteana, accounting for 19% of the total viticulture area, followed by L. botrana and A. ljungiana for 11% of the study area. These results may help with the optimization of surveillance efforts by indicating which species or areas should be prioritized for the deployment of invasive pest detection programs with pheromone traps. Indeed, given the apparent potential for co-occurrence of multiple moth pests in certain areas, our results may inform where single or multi-lure traps should be deployed as a more cost-efficient monitoring tool.\",\"PeriodicalId\":54290,\"journal\":{\"name\":\"Neobiota\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neobiota\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3897/neobiota.86.100579\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neobiota","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3897/neobiota.86.100579","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

当生物入侵在早期阶段被识别时,可以最有效地管理,这通常取决于强有力的监测计划。最近欧洲葡萄蛾(Lobesia botrana)在加利福尼亚州的入侵表明,美国西部的葡萄栽培区如果要建立,可能会面临这种蛾类和其他自相残杀蛾和梨蛾类的严重经济后果。为了深入了解这些葡萄害虫带来的风险,我们使用了原产于欧洲或美国东部的L.botrana和其他四种蛾类的发生记录,并选择了环境变量来预测气候适宜地区的范围和美国西海岸潜在的害虫共现。使用MaxEnt生成了一套模型,并对模型设置进行了特定于物种的调整。总的来说,研究结果证实了L.botrana在研究区域的大部分地区都很适合建立,这主要是由于降雨量和海拔的高月变化性。据预测,有两个物种在研究区域内具有中等的适宜性(即,葡萄龟甲蛾,Argyrotaenia ljungana;葡萄浆果蛾,Paralobesia viteana),而另外两个物种的适宜性较低(即,欧洲葡萄浆果蛾Eupoecilia ambiguella;圣诞浆果webworm,Cryptoblabes gnidiella)。预测的共生潜力最高的是L.botrana和P.viteana,占葡萄栽培总面积的19%,其次是L.botlana和A.ljungana,占研究面积的11%。这些结果可能有助于优化监测工作,表明哪些物种或地区应优先部署带有信息素陷阱的入侵性害虫检测程序。事实上,考虑到在某些地区多种蛾类害虫共存的明显可能性,我们的研究结果可能会告诉我们,作为一种更具成本效益的监测工具,应该在哪里部署单诱饵或多诱饵诱捕器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing the risk of invasion by a vineyard moth pest guild
Biological invasions are most effectively managed when identified in their early stages, which often hinges on robust surveillance programs. The recent invasion of the European grapevine moth (Lobesia botrana) in California suggests that viticultural areas in the western United States may face severe economic consequences from this and other Tortricid and Pyralid moth species if they were to establish. To gain insights into the risk these grapevine pests pose, we used occurrence records for L. botrana and four other moths native to Europe or the eastern United States and selected environmental variables to predict the extent of climatically suitable areas and potential pest co-occurrence along the West Coast of the United States. A suite of models was generated using MaxEnt with species-specific tuning of model settings. Overall, the results confirmed high suitability for L. botrana to establish across much of the study region, driven largely by high monthly variability in precipitation and low elevation. Two species were predicted to have intermediate suitability to establish over the study region (i.e., grape tortrix moth, Argyrotaenia ljungiana; grape berry moth, Paralobesia viteana), while two others had low suitability (i.e., European grape berry moth, Eupoecilia ambiguella; Christmas berry webworm, Cryptoblabes gnidiella). The highest predicted potential for co-occurrence was between L. botrana and P. viteana, accounting for 19% of the total viticulture area, followed by L. botrana and A. ljungiana for 11% of the study area. These results may help with the optimization of surveillance efforts by indicating which species or areas should be prioritized for the deployment of invasive pest detection programs with pheromone traps. Indeed, given the apparent potential for co-occurrence of multiple moth pests in certain areas, our results may inform where single or multi-lure traps should be deployed as a more cost-efficient monitoring tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neobiota
Neobiota Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.10
自引率
7.80%
发文量
0
审稿时长
6 weeks
期刊介绍: NeoBiota is a peer-reviewed, open-access, rapid online journal launched to accelerate research on alien species and biological invasions: aquatic and terrestrial, animals, plants, fungi and micro-organisms. The journal NeoBiota is a continuation of the former NEOBIOTA publication series; for volumes 1-8 see http://www.oekosys.tu-berlin.de/menue/neobiota All articles are published immediately upon editorial approval. All published papers can be freely copied, downloaded, printed and distributed at no charge for the reader. Authors are thus encouraged to post the pdf files of published papers on their homepages or elsewhere to expedite distribution. There is no charge for color.
期刊最新文献
Evidence of short-term response of rocky cliffs vegetation after removal of invasive alien Carpobrotus spp. Strangers in a strange land; freshwater fish introductions, impacts, management and socio-ecological feedbacks in a small island nation – the case of Aotearoa New Zealand Effects of earthworm invasion on soil properties and plant diversity after two years of field experiment Differential survival and feeding rates of three commonly traded gastropods across salinities Stable isotope analysis reveals diet niche partitioning between native species and the invasive black bullhead (Ameiurus melas Rafinesque, 1820)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1