紧凑型相控阵和传统地震网络在CO2封存试验场微震监测中的性能比较

Q2 Earth and Planetary Sciences Leading Edge Pub Date : 2023-05-01 DOI:10.1190/tle42050332.1
Jian Zhang, K. D. Hutchenson, P. Nyffenegger, Elige B. Grant, Jason Jennings, M. Tinker, M. Macquet, D. Lawton
{"title":"紧凑型相控阵和传统地震网络在CO2封存试验场微震监测中的性能比较","authors":"Jian Zhang, K. D. Hutchenson, P. Nyffenegger, Elige B. Grant, Jason Jennings, M. Tinker, M. Macquet, D. Lawton","doi":"10.1190/tle42050332.1","DOIUrl":null,"url":null,"abstract":"As carbon capture, utilization, and sequestration scales toward the gigatonnes level, the need for underground reservoir surveillance is driving efforts in advancing technologies for cost-effective passive seismic monitoring. Quantum Technology Sciences, in cooperation with Carbon Management Canada's Containment and Monitoring Institute (CaMI), installed a network of four permanent compact volumetric phased arrays (seismic and acoustic detection and ranging [SADAR] system) at CaMI's Field Research Station (FRS) to demonstrate the results that can be achieved through passive monitoring of microseismicity using this technology. Configured as a sparse network, the SADAR arrays provide passive, persistent, and permanent data acquisition and analysis for monitoring microseismicity in the earth volume of interest. Data from the phased arrays are processed to take advantage of the spatial coherence of the incident seismic signals to increase signal resolution while suppressing noise and clutter signals and providing signal attributes such as angle of incidence and phase velocity. The CaMI FRS has a network of 28 permanent surface stations that are deployed in an x-shaped geometry centered on the injection well. It has a downhole array of 24 geophones that are permanently deployed in an observation well. This provides a ready and unique opportunity to evaluate the detection and location performance of the different systems for passive seismic monitoring. We analyze observations of five example events selected from the microseismicity detected by the SADAR arrays with moment magnitudes (Mw) down to approximately −2. Signal-to-noise ratio (S/N) and location uncertainties are compared for the events acquired using SADAR arrays versus the surface sensors. The results demonstrate improved performance of networked SADAR arrays compared to traditional surface sensor deployment for detecting and locating microseismicity. Specifically, the results show that coherent processing of SADAR arrays achieves S/N gains up to about 20 dB and location errors down to 10 m.","PeriodicalId":35661,"journal":{"name":"Leading Edge","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance comparison of compact phased arrays and traditional seismic networks for microseismic monitoring at a CO2 sequestration test site\",\"authors\":\"Jian Zhang, K. D. Hutchenson, P. Nyffenegger, Elige B. Grant, Jason Jennings, M. Tinker, M. Macquet, D. Lawton\",\"doi\":\"10.1190/tle42050332.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As carbon capture, utilization, and sequestration scales toward the gigatonnes level, the need for underground reservoir surveillance is driving efforts in advancing technologies for cost-effective passive seismic monitoring. Quantum Technology Sciences, in cooperation with Carbon Management Canada's Containment and Monitoring Institute (CaMI), installed a network of four permanent compact volumetric phased arrays (seismic and acoustic detection and ranging [SADAR] system) at CaMI's Field Research Station (FRS) to demonstrate the results that can be achieved through passive monitoring of microseismicity using this technology. Configured as a sparse network, the SADAR arrays provide passive, persistent, and permanent data acquisition and analysis for monitoring microseismicity in the earth volume of interest. Data from the phased arrays are processed to take advantage of the spatial coherence of the incident seismic signals to increase signal resolution while suppressing noise and clutter signals and providing signal attributes such as angle of incidence and phase velocity. The CaMI FRS has a network of 28 permanent surface stations that are deployed in an x-shaped geometry centered on the injection well. It has a downhole array of 24 geophones that are permanently deployed in an observation well. This provides a ready and unique opportunity to evaluate the detection and location performance of the different systems for passive seismic monitoring. We analyze observations of five example events selected from the microseismicity detected by the SADAR arrays with moment magnitudes (Mw) down to approximately −2. Signal-to-noise ratio (S/N) and location uncertainties are compared for the events acquired using SADAR arrays versus the surface sensors. The results demonstrate improved performance of networked SADAR arrays compared to traditional surface sensor deployment for detecting and locating microseismicity. Specifically, the results show that coherent processing of SADAR arrays achieves S/N gains up to about 20 dB and location errors down to 10 m.\",\"PeriodicalId\":35661,\"journal\":{\"name\":\"Leading Edge\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leading Edge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/tle42050332.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle42050332.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

随着碳捕获、利用和封存的规模达到亿吨级,地下水库监测的需求正在推动推动经济高效的被动地震监测技术的发展。量子技术科学与加拿大碳管理控制与监测研究所(CaMI)合作,在CaMI的野外研究站(FRS)安装了一个由四个永久性紧凑体积相控阵(地震和声学探测和测距[SDAR]系统)组成的网络,以证明使用该技术通过被动监测微震性可以获得的结果。SADAR阵列配置为稀疏网络,提供被动、持久和永久的数据采集和分析,用于监测感兴趣的地球体积中的微震性。对来自相控阵的数据进行处理,以利用入射地震信号的空间相干性来提高信号分辨率,同时抑制噪声和杂波信号,并提供诸如入射角和相位速度之类的信号属性。CaMI FRS有一个由28个永久地面站组成的网络,这些站部署在以注入井为中心的x形几何形状中。它有一个由24个检波器组成的井下阵列,这些检波器永久部署在观测井中。这为评估被动地震监测的不同系统的检测和定位性能提供了一个现成且独特的机会。我们分析了从SADAR阵列检测到的微震性中选择的五个实例事件的观测结果,矩震级(Mw)降至约−2。将使用SADAR阵列与表面传感器获取的事件的信噪比(S/N)和位置不确定性进行比较。结果表明,与传统的表面传感器部署相比,网络SADAR阵列在检测和定位微震方面的性能有所提高。具体地,结果表明,SADAR阵列的相干处理实现了高达约20dB的S/N增益和低至10m的位置误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance comparison of compact phased arrays and traditional seismic networks for microseismic monitoring at a CO2 sequestration test site
As carbon capture, utilization, and sequestration scales toward the gigatonnes level, the need for underground reservoir surveillance is driving efforts in advancing technologies for cost-effective passive seismic monitoring. Quantum Technology Sciences, in cooperation with Carbon Management Canada's Containment and Monitoring Institute (CaMI), installed a network of four permanent compact volumetric phased arrays (seismic and acoustic detection and ranging [SADAR] system) at CaMI's Field Research Station (FRS) to demonstrate the results that can be achieved through passive monitoring of microseismicity using this technology. Configured as a sparse network, the SADAR arrays provide passive, persistent, and permanent data acquisition and analysis for monitoring microseismicity in the earth volume of interest. Data from the phased arrays are processed to take advantage of the spatial coherence of the incident seismic signals to increase signal resolution while suppressing noise and clutter signals and providing signal attributes such as angle of incidence and phase velocity. The CaMI FRS has a network of 28 permanent surface stations that are deployed in an x-shaped geometry centered on the injection well. It has a downhole array of 24 geophones that are permanently deployed in an observation well. This provides a ready and unique opportunity to evaluate the detection and location performance of the different systems for passive seismic monitoring. We analyze observations of five example events selected from the microseismicity detected by the SADAR arrays with moment magnitudes (Mw) down to approximately −2. Signal-to-noise ratio (S/N) and location uncertainties are compared for the events acquired using SADAR arrays versus the surface sensors. The results demonstrate improved performance of networked SADAR arrays compared to traditional surface sensor deployment for detecting and locating microseismicity. Specifically, the results show that coherent processing of SADAR arrays achieves S/N gains up to about 20 dB and location errors down to 10 m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Leading Edge
Leading Edge Earth and Planetary Sciences-Geology
CiteScore
3.10
自引率
0.00%
发文量
180
期刊介绍: THE LEADING EDGE complements GEOPHYSICS, SEG"s peer-reviewed publication long unrivalled as the world"s most respected vehicle for dissemination of developments in exploration and development geophysics. TLE is a gateway publication, introducing new geophysical theory, instrumentation, and established practices to scientists in a wide range of geoscience disciplines. Most material is presented in a semitechnical manner that minimizes mathematical theory and emphasizes practical applications. TLE also serves as SEG"s publication venue for official society business.
期刊最新文献
Earth Science Week explores innovations in the geosciences Predictive monitoring of urban slope instabilities using geophysics and wireless sensor networks Seismic Soundoff: How to unlock the power of networking Hydrogeologic controls on barrier island geomorphology: Insights from electromagnetic surveys Reviews
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1