阿基米德交配式的推论

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY Annals of Statistics Pub Date : 2020-04-01 DOI:10.1214/19-aos1836
Simon Chatelain, Anne-Laure Fougères, J. Nešlehová
{"title":"阿基米德交配式的推论","authors":"Simon Chatelain, Anne-Laure Fougères, J. Nešlehová","doi":"10.1214/19-aos1836","DOIUrl":null,"url":null,"abstract":"Archimax copula models can account for any type of asymptotic dependence between extremes and at the same time capture joint risks at medium levels. An Archimax copula is characterized by two functional parameters, the stable tail dependence function `, and the Archimedean generator ψ which distorts the extreme-value dependence structure. This article develops semiparametric inference for Archimax copulas: a nonparametric estimator of ` and a momentbased estimator of ψ assuming the latter belongs to a parametric family. Conditions under which ψ and ` are identifiable are derived. The asymptotic behavior of the estimators is then established under broad regularity conditions; performance in small samples is assessed through a comprehensive simulation study. The Archimax copula model with the Clayton generator is then used to analyze monthly rainfall maxima at three stations in French Brittany. The model is seen to fit the data very well, both in the lower and in the upper tail. The nonparametric estimator of ` reveals asymmetric extremal dependence between the stations, which reflects heavy precipitation patterns in the area. Technical proofs, simulation results and R code are provided in the Online Supplement.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"1025-1051"},"PeriodicalIF":3.2000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Inference for Archimax copulas\",\"authors\":\"Simon Chatelain, Anne-Laure Fougères, J. Nešlehová\",\"doi\":\"10.1214/19-aos1836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Archimax copula models can account for any type of asymptotic dependence between extremes and at the same time capture joint risks at medium levels. An Archimax copula is characterized by two functional parameters, the stable tail dependence function `, and the Archimedean generator ψ which distorts the extreme-value dependence structure. This article develops semiparametric inference for Archimax copulas: a nonparametric estimator of ` and a momentbased estimator of ψ assuming the latter belongs to a parametric family. Conditions under which ψ and ` are identifiable are derived. The asymptotic behavior of the estimators is then established under broad regularity conditions; performance in small samples is assessed through a comprehensive simulation study. The Archimax copula model with the Clayton generator is then used to analyze monthly rainfall maxima at three stations in French Brittany. The model is seen to fit the data very well, both in the lower and in the upper tail. The nonparametric estimator of ` reveals asymmetric extremal dependence between the stations, which reflects heavy precipitation patterns in the area. Technical proofs, simulation results and R code are provided in the Online Supplement.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"48 1\",\"pages\":\"1025-1051\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aos1836\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1836","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

摘要

阿基米德copula模型可以解释极端之间的任何类型的渐近依赖性,同时捕捉中等水平的联合风险。阿基米德copula由两个函数参数表征,即稳定的尾部依赖函数和扭曲极值依赖结构的阿基米德生成器ψ。本文发展了阿基米德copula的半参数推断:`的非参数估计量和ψ的基于矩的估计量,假设后者属于参数族。导出了ψ和`可识别的条件。然后在广义正则性条件下建立了估计量的渐近行为;通过全面的模拟研究来评估小样本的性能。然后使用Clayton发电机的阿基米德copula模型来分析法属布列塔尼三个站点的月最大降雨量。该模型在下尾部和上尾部都很好地拟合了数据。`的非参数估计揭示了站点之间的非对称极值依赖性,反映了该地区的强降水模式。在线补充中提供了技术证明、模拟结果和R代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inference for Archimax copulas
Archimax copula models can account for any type of asymptotic dependence between extremes and at the same time capture joint risks at medium levels. An Archimax copula is characterized by two functional parameters, the stable tail dependence function `, and the Archimedean generator ψ which distorts the extreme-value dependence structure. This article develops semiparametric inference for Archimax copulas: a nonparametric estimator of ` and a momentbased estimator of ψ assuming the latter belongs to a parametric family. Conditions under which ψ and ` are identifiable are derived. The asymptotic behavior of the estimators is then established under broad regularity conditions; performance in small samples is assessed through a comprehensive simulation study. The Archimax copula model with the Clayton generator is then used to analyze monthly rainfall maxima at three stations in French Brittany. The model is seen to fit the data very well, both in the lower and in the upper tail. The nonparametric estimator of ` reveals asymmetric extremal dependence between the stations, which reflects heavy precipitation patterns in the area. Technical proofs, simulation results and R code are provided in the Online Supplement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
期刊最新文献
ON BLOCKWISE AND REFERENCE PANEL-BASED ESTIMATORS FOR GENETIC DATA PREDICTION IN HIGH DIMENSIONS. RANK-BASED INDICES FOR TESTING INDEPENDENCE BETWEEN TWO HIGH-DIMENSIONAL VECTORS. Single index Fréchet regression Graphical models for nonstationary time series On lower bounds for the bias-variance trade-off
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1