{"title":"啤酒风味化合物提取技术研究进展","authors":"Inês M. Ferreira, L. Guido","doi":"10.3390/beverages9030071","DOIUrl":null,"url":null,"abstract":"Owing to the unique chemical properties exhibited by beer flavor compounds, different extraction methods have been utilized to extract these compounds from the sample matrix. Carbonyl compounds, which significantly contribute to flavor instability in beer, pose challenges in detection due to their low concentrations and reactivity. Consequently, the analysis of beer flavor compounds has focused on improving sensitivity and specificity through techniques that minimize sample preparation requirements and reduce interactions between factors involved in the analysis. Notably, extraction techniques such as headspace solid-phase microextraction (HS-SPME), stir bar sorptive extraction (SBSE), and gas diffusion microextraction (GDME) have been successfully applied to the analysis of carbonyl compounds in alcoholic beverages, including beer. Derivatization agents like 2,4-dinitrophenylhydrazine (DNPH) and O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) enhance the volatility and stability of analytes, facilitating their separation and detection in gas chromatography and high-performance liquid chromatography. Chromatographic separation methods, particularly gas chromatography and liquid chromatography, are extensively employed to identify and quantify aroma/flavor compounds in various foodstuffs, including beer. This review provides a comprehensive overview of extraction techniques and chromatographic methods used in the analysis of beer compounds.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Extraction Techniques for Beer Flavor Compounds\",\"authors\":\"Inês M. Ferreira, L. Guido\",\"doi\":\"10.3390/beverages9030071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the unique chemical properties exhibited by beer flavor compounds, different extraction methods have been utilized to extract these compounds from the sample matrix. Carbonyl compounds, which significantly contribute to flavor instability in beer, pose challenges in detection due to their low concentrations and reactivity. Consequently, the analysis of beer flavor compounds has focused on improving sensitivity and specificity through techniques that minimize sample preparation requirements and reduce interactions between factors involved in the analysis. Notably, extraction techniques such as headspace solid-phase microextraction (HS-SPME), stir bar sorptive extraction (SBSE), and gas diffusion microextraction (GDME) have been successfully applied to the analysis of carbonyl compounds in alcoholic beverages, including beer. Derivatization agents like 2,4-dinitrophenylhydrazine (DNPH) and O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) enhance the volatility and stability of analytes, facilitating their separation and detection in gas chromatography and high-performance liquid chromatography. Chromatographic separation methods, particularly gas chromatography and liquid chromatography, are extensively employed to identify and quantify aroma/flavor compounds in various foodstuffs, including beer. This review provides a comprehensive overview of extraction techniques and chromatographic methods used in the analysis of beer compounds.\",\"PeriodicalId\":8773,\"journal\":{\"name\":\"Beverages\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beverages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/beverages9030071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beverages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/beverages9030071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Advances in Extraction Techniques for Beer Flavor Compounds
Owing to the unique chemical properties exhibited by beer flavor compounds, different extraction methods have been utilized to extract these compounds from the sample matrix. Carbonyl compounds, which significantly contribute to flavor instability in beer, pose challenges in detection due to their low concentrations and reactivity. Consequently, the analysis of beer flavor compounds has focused on improving sensitivity and specificity through techniques that minimize sample preparation requirements and reduce interactions between factors involved in the analysis. Notably, extraction techniques such as headspace solid-phase microextraction (HS-SPME), stir bar sorptive extraction (SBSE), and gas diffusion microextraction (GDME) have been successfully applied to the analysis of carbonyl compounds in alcoholic beverages, including beer. Derivatization agents like 2,4-dinitrophenylhydrazine (DNPH) and O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) enhance the volatility and stability of analytes, facilitating their separation and detection in gas chromatography and high-performance liquid chromatography. Chromatographic separation methods, particularly gas chromatography and liquid chromatography, are extensively employed to identify and quantify aroma/flavor compounds in various foodstuffs, including beer. This review provides a comprehensive overview of extraction techniques and chromatographic methods used in the analysis of beer compounds.