不同采收后加工方法对印尼咖啡豆理化特性的影响

IF 0.9 Q3 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering and Technological Sciences Pub Date : 2023-03-06 DOI:10.5614/j.eng.technol.sci.2023.55.1.1
E. Yusibani, P. Woodfield, A. Rahwanto, M. S. Surbakti, Rajibussalim Rajibussalim, R. Rahmi
{"title":"不同采收后加工方法对印尼咖啡豆理化特性的影响","authors":"E. Yusibani, P. Woodfield, A. Rahwanto, M. S. Surbakti, Rajibussalim Rajibussalim, R. Rahmi","doi":"10.5614/j.eng.technol.sci.2023.55.1.1","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to identify the physical and chemical properties of Indonesian coffee beans for different postharvesting methods after being roasted. Several types of Indonesian export coffee, i.e., Gayo Luwak coffee, Wamena coffee, Toraja coffee, Gayo coffee, Flores coffee and Kintamani coffee, were used in the present study. Each coffee has its own aroma and taste according to the location, soil type, and land elevation. The roasting process started with preheating the roasting machine, after which the samples were roasted for about 15 minutes at 215℃ to obtain the medium-to-dark (MTD) roasting level. The physical properties measured included density, mass loss, porosity, water content, and morphology using a scanning electron microscope. The transmittance spectrum was observed by Fourier transform infrared spectroscopy (FTIR). The physical properties of the coffee were successfully measured. The bulk density varied from 0.6 to 0.7 g/cm3, and particle density was about 0.9 g/cm3 for green beans. The roasting process reduced the bulk and particle density to 0.3 g/cm3 on average and 0.8 g/cm3, respectively. The fully-washed condition gave an overlapping spectrum for green and roasted beans, which shows that the roasting process did not affect the spectrum. The results can be used to study the coffee quality resulting from different postharvest processing methods.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Physical and Chemical Properties of Indonesian Coffee Beans for Different Postharvest Processing Methods\",\"authors\":\"E. Yusibani, P. Woodfield, A. Rahwanto, M. S. Surbakti, Rajibussalim Rajibussalim, R. Rahmi\",\"doi\":\"10.5614/j.eng.technol.sci.2023.55.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to identify the physical and chemical properties of Indonesian coffee beans for different postharvesting methods after being roasted. Several types of Indonesian export coffee, i.e., Gayo Luwak coffee, Wamena coffee, Toraja coffee, Gayo coffee, Flores coffee and Kintamani coffee, were used in the present study. Each coffee has its own aroma and taste according to the location, soil type, and land elevation. The roasting process started with preheating the roasting machine, after which the samples were roasted for about 15 minutes at 215℃ to obtain the medium-to-dark (MTD) roasting level. The physical properties measured included density, mass loss, porosity, water content, and morphology using a scanning electron microscope. The transmittance spectrum was observed by Fourier transform infrared spectroscopy (FTIR). The physical properties of the coffee were successfully measured. The bulk density varied from 0.6 to 0.7 g/cm3, and particle density was about 0.9 g/cm3 for green beans. The roasting process reduced the bulk and particle density to 0.3 g/cm3 on average and 0.8 g/cm3, respectively. The fully-washed condition gave an overlapping spectrum for green and roasted beans, which shows that the roasting process did not affect the spectrum. The results can be used to study the coffee quality resulting from different postharvest processing methods.\",\"PeriodicalId\":15689,\"journal\":{\"name\":\"Journal of Engineering and Technological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Technological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.eng.technol.sci.2023.55.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是鉴定印度尼西亚咖啡豆在烘焙后不同采后方法的物理和化学性质。本研究使用了几种类型的印尼出口咖啡,即Gayo Luwak咖啡、Wamena咖啡、Toraja咖啡、Gayo咖啡、Flores咖啡和Kintamani咖啡。根据位置、土壤类型和海拔高度,每种咖啡都有自己的香气和味道。焙烧过程从预热焙烧机开始,然后将样品在215℃下焙烧约15分钟,以获得中等至深色(MTD)的焙烧水平。使用扫描电子显微镜测量的物理性质包括密度、质量损失、孔隙率、含水量和形态。通过傅立叶变换红外光谱(FTIR)观察透射光谱。成功地测定了咖啡的物理性质。体积密度在0.6至0.7g/cm3之间变化,并且绿豆的颗粒密度为约0.9g/cm3。焙烧过程将体积密度和颗粒密度分别降低到平均0.3g/cm3和0.8g/cm3。完全洗涤的条件给出了生豆和烤豆的重叠光谱,这表明烘焙过程没有影响光谱。研究结果可用于研究不同采后加工方法对咖啡品质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physical and Chemical Properties of Indonesian Coffee Beans for Different Postharvest Processing Methods
The purpose of this study was to identify the physical and chemical properties of Indonesian coffee beans for different postharvesting methods after being roasted. Several types of Indonesian export coffee, i.e., Gayo Luwak coffee, Wamena coffee, Toraja coffee, Gayo coffee, Flores coffee and Kintamani coffee, were used in the present study. Each coffee has its own aroma and taste according to the location, soil type, and land elevation. The roasting process started with preheating the roasting machine, after which the samples were roasted for about 15 minutes at 215℃ to obtain the medium-to-dark (MTD) roasting level. The physical properties measured included density, mass loss, porosity, water content, and morphology using a scanning electron microscope. The transmittance spectrum was observed by Fourier transform infrared spectroscopy (FTIR). The physical properties of the coffee were successfully measured. The bulk density varied from 0.6 to 0.7 g/cm3, and particle density was about 0.9 g/cm3 for green beans. The roasting process reduced the bulk and particle density to 0.3 g/cm3 on average and 0.8 g/cm3, respectively. The fully-washed condition gave an overlapping spectrum for green and roasted beans, which shows that the roasting process did not affect the spectrum. The results can be used to study the coffee quality resulting from different postharvest processing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering and Technological Sciences
Journal of Engineering and Technological Sciences ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
77
审稿时长
24 weeks
期刊介绍: Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Green Energy Technologies: A Key Driver in Carbon Emission Reduction The Effect of Illumination, Electrode Distance, and Illumination Periods on the Performance of Phototrophic Sediment Microbial Fuel Cells (PSMFCs) Comparison Study of Corn Leaf Disease Detection based on Deep Learning YOLO-v5 and YOLO-v8 Hematite-Gamma Alumina-based Solid Catalyst Development for Biodiesel Production from Palm Oil Minimize Total Cost and Maximize Total Profit for Power Systems with Pumped Storage Hydro and Renewable Power Plants Using Improved Self-Organizing Migration Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1