MEMS磁强计的开发与后切模湿释:一种方法

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronics International Pub Date : 2021-07-19 DOI:10.1108/MI-12-2020-0081
Aditi, S. Das, R. Gopal
{"title":"MEMS磁强计的开发与后切模湿释:一种方法","authors":"Aditi, S. Das, R. Gopal","doi":"10.1108/MI-12-2020-0081","DOIUrl":null,"url":null,"abstract":"\nPurpose\nSi-based micro electro mechanical systems (MEMS) magnetometer does not require specialized magnetic materials avoiding magnetic hysteresis, ease in fabrication and low power consumption. It can be fabricated using the same processes used for gyroscope and accelerometer fabrication. The paper reports the dicing mechanism for the released MEMS xylophone magnetic sensor fabricated using wafer bonding technology and its characterization in ambient pressure and under vacuum conditions. The purpose of this paper is to dice the wafer bonded Si-magnetometer in a cost-effective way without the use of laser dicing and test it for Lorentz force transduction.\n\n\nDesign/methodology/approach\nA xylophone bar MEMS magnetometer using Lorentz force transduction is developed. The fabricated MEMS-based xylophone bars in literature are approximately 500 µm. The present work shows the released structure (L = 592 µm) fabricated by anodic bonding technique using conducting Si as the structural layer and tested for Lorentz force transduction. The microstructures fabricated at the wafer level are released. Dicing these released structures using conventional diamond blade dicing may damage the structures and reduce the yield. To avoid the problem, positive photoresist S1813 was filled before dicing. The dicing of the wafer, filled with photoresist and later removal of photoresist post dicing, is proposed.\n\n\nFindings\nThe devices realized are stiction free and straight. The dynamic measurements are done using laser Doppler vibrometer to verify the released structure and test its functionality for Lorentz force transduction. The magnetic field is applied using a permanent magnet and Helmholtz coil. Two sensors with quality factors 70 and 238 are tested with resonant frequency 112.38 kHz and 114.38 kHz, respectively. The sensor D2, with Q as 238, shows a mechanical sensitivity of 500 pm/Gauss and theoretical Brownian noise-limited resolution of 53 nT/vHz.\n\n\nOriginality/value\nThe methodology and the study will help develop Lorentz force–based MEMS magnetometers such that stiction-free structures are released using wet etch after the mechanical dicing.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and post-dicing wet release of MEMS magnetometer: an approach\",\"authors\":\"Aditi, S. Das, R. Gopal\",\"doi\":\"10.1108/MI-12-2020-0081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nSi-based micro electro mechanical systems (MEMS) magnetometer does not require specialized magnetic materials avoiding magnetic hysteresis, ease in fabrication and low power consumption. It can be fabricated using the same processes used for gyroscope and accelerometer fabrication. The paper reports the dicing mechanism for the released MEMS xylophone magnetic sensor fabricated using wafer bonding technology and its characterization in ambient pressure and under vacuum conditions. The purpose of this paper is to dice the wafer bonded Si-magnetometer in a cost-effective way without the use of laser dicing and test it for Lorentz force transduction.\\n\\n\\nDesign/methodology/approach\\nA xylophone bar MEMS magnetometer using Lorentz force transduction is developed. The fabricated MEMS-based xylophone bars in literature are approximately 500 µm. The present work shows the released structure (L = 592 µm) fabricated by anodic bonding technique using conducting Si as the structural layer and tested for Lorentz force transduction. The microstructures fabricated at the wafer level are released. Dicing these released structures using conventional diamond blade dicing may damage the structures and reduce the yield. To avoid the problem, positive photoresist S1813 was filled before dicing. The dicing of the wafer, filled with photoresist and later removal of photoresist post dicing, is proposed.\\n\\n\\nFindings\\nThe devices realized are stiction free and straight. The dynamic measurements are done using laser Doppler vibrometer to verify the released structure and test its functionality for Lorentz force transduction. The magnetic field is applied using a permanent magnet and Helmholtz coil. Two sensors with quality factors 70 and 238 are tested with resonant frequency 112.38 kHz and 114.38 kHz, respectively. The sensor D2, with Q as 238, shows a mechanical sensitivity of 500 pm/Gauss and theoretical Brownian noise-limited resolution of 53 nT/vHz.\\n\\n\\nOriginality/value\\nThe methodology and the study will help develop Lorentz force–based MEMS magnetometers such that stiction-free structures are released using wet etch after the mechanical dicing.\\n\",\"PeriodicalId\":49817,\"journal\":{\"name\":\"Microelectronics International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/MI-12-2020-0081\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/MI-12-2020-0081","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于si的微机电系统(MEMS)磁强计不需要专门的磁性材料,避免了磁滞,易于制造和低功耗。它可以使用与陀螺仪和加速度计制造相同的工艺制造。本文报道了利用晶圆键合技术制备的释放式MEMS木琴磁传感器的切割机理及其在常压和真空条件下的表征。本文的目的是在不使用激光切割的情况下,以一种经济有效的方式切割硅片键合硅磁强计,并测试其洛伦兹力转导。设计/方法/方法开发了一种采用洛伦兹力转导的木琴杆MEMS磁强计。文献中制备的基于mems的木琴杆尺寸约为500µm。本工作展示了用导电硅作为结构层,通过阳极键合技术制备的释放结构(L = 592µm),并进行了洛伦兹力传导测试。在晶圆级制造的微结构被释放。使用传统的金刚石刀片切割这些释放的结构可能会破坏结构,降低成品率。为了避免这个问题,在切丁之前先填充正极光刻胶S1813。提出了用光刻胶填充硅片的切割方法,并在切割后去除光刻胶。所实现的器件具有无粘直的特点。利用激光多普勒测振仪进行了动态测量,以验证释放结构并测试其用于洛伦兹力转导的功能。磁场是用永磁体和亥姆霍兹线圈施加的。在谐振频率为112.38 kHz和114.38 kHz的情况下,对质量因子为70和238的两个传感器进行了测试。D2传感器的Q值为238,机械灵敏度为500 pm/Gauss,理论布朗噪声限制分辨率为53 nT/vHz。独创性/价值该方法和研究将有助于开发基于洛伦兹力的MEMS磁力计,以便在机械切割后使用湿蚀刻释放无粘性结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and post-dicing wet release of MEMS magnetometer: an approach
Purpose Si-based micro electro mechanical systems (MEMS) magnetometer does not require specialized magnetic materials avoiding magnetic hysteresis, ease in fabrication and low power consumption. It can be fabricated using the same processes used for gyroscope and accelerometer fabrication. The paper reports the dicing mechanism for the released MEMS xylophone magnetic sensor fabricated using wafer bonding technology and its characterization in ambient pressure and under vacuum conditions. The purpose of this paper is to dice the wafer bonded Si-magnetometer in a cost-effective way without the use of laser dicing and test it for Lorentz force transduction. Design/methodology/approach A xylophone bar MEMS magnetometer using Lorentz force transduction is developed. The fabricated MEMS-based xylophone bars in literature are approximately 500 µm. The present work shows the released structure (L = 592 µm) fabricated by anodic bonding technique using conducting Si as the structural layer and tested for Lorentz force transduction. The microstructures fabricated at the wafer level are released. Dicing these released structures using conventional diamond blade dicing may damage the structures and reduce the yield. To avoid the problem, positive photoresist S1813 was filled before dicing. The dicing of the wafer, filled with photoresist and later removal of photoresist post dicing, is proposed. Findings The devices realized are stiction free and straight. The dynamic measurements are done using laser Doppler vibrometer to verify the released structure and test its functionality for Lorentz force transduction. The magnetic field is applied using a permanent magnet and Helmholtz coil. Two sensors with quality factors 70 and 238 are tested with resonant frequency 112.38 kHz and 114.38 kHz, respectively. The sensor D2, with Q as 238, shows a mechanical sensitivity of 500 pm/Gauss and theoretical Brownian noise-limited resolution of 53 nT/vHz. Originality/value The methodology and the study will help develop Lorentz force–based MEMS magnetometers such that stiction-free structures are released using wet etch after the mechanical dicing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics International
Microelectronics International 工程技术-材料科学:综合
CiteScore
1.90
自引率
9.10%
发文量
28
审稿时长
>12 weeks
期刊介绍: Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details. Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are: • Advanced packaging • Ceramics • Chip attachment • Chip on board (COB) • Chip scale packaging • Flexible substrates • MEMS • Micro-circuit technology • Microelectronic materials • Multichip modules (MCMs) • Organic/polymer electronics • Printed electronics • Semiconductor technology • Solid state sensors • Thermal management • Thick/thin film technology • Wafer scale processing.
期刊最新文献
Study of the electronic transport performance of ZnO-SiO2 film: the construction of grain boundary barrier 3-pass and 5-pass laser grooving & die strength characterization for reinforced internal low-k 55nm node wafer structure via heat-treatment process Deformation and crack growth in multilayered ceramic capacitor during thermal reflow process: numerical and experimental investigation Simplifying finite elements analysis of four-point bending tests for flip chip microcomponents Quasi-elliptic band pass filter using resonators based on coupling theory for ultra-wide band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1