远红光和营养水平对夏枯草离体培养物生长和次生代谢产物的影响

IF 3.3 2区 农林科学 Q1 AGRONOMY Agronomy-Basel Pub Date : 2023-08-27 DOI:10.3390/agronomy13092250
Caiyun Chen, Jing-Ping Yang, Wen-Dar Huang, Chang-Chang Chen
{"title":"远红光和营养水平对夏枯草离体培养物生长和次生代谢产物的影响","authors":"Caiyun Chen, Jing-Ping Yang, Wen-Dar Huang, Chang-Chang Chen","doi":"10.3390/agronomy13092250","DOIUrl":null,"url":null,"abstract":"Prunella vulgaris, a medicinal plant with antioxidant capacity, was investigated for its response to varying intensities of far-red light and nutrient levels. Plantlets were cultured for 30 d under low far-red light (LFR) or high far-red light (HFR) conditions and different nutrient levels (full, half, and quarter). HFR reduced leaf and branch number, dry weight, and accumulation of chlorophylls (Chl) and carotenoids (Car), while increasing plant height. Lower nutrient levels increased plant height and leaf number, but decreased branch number, Chl, and Car. HFR significantly increased total phenolic content (TPC), rutin, and rosmarinic acid levels, while total flavonoid content decreased. As nutrient levels decreased, TPC and rosmarinic acid declined. HFR induced significant DPPH scavenging activity, while reducing power increased with higher far-red light and nutrient levels. The ferrous ion chelating effect under LFR reduced with lower nutrient levels. There were strong correlations among TPC, rosmarinic acid, DPPH scavenging activity, and reducing power. In conclusion, HFR inhibited plantlet growth but enhanced secondary metabolite accumulation and antioxidant capacity. Different nutrient levels stimulated diverse growth responses, while elevated nutrient levels promoted secondary metabolite production. This study demonstrated the responses of growth, secondary metabolite accumulation, and antioxidant activity in the in vitro cultured P. vulgaris to supplemental far-red light and various nutrient levels.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Far-Red Light and Nutrient Level on the Growth and Secondary Metabolites of the In Vitro Culture of Prunella vulgaris\",\"authors\":\"Caiyun Chen, Jing-Ping Yang, Wen-Dar Huang, Chang-Chang Chen\",\"doi\":\"10.3390/agronomy13092250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prunella vulgaris, a medicinal plant with antioxidant capacity, was investigated for its response to varying intensities of far-red light and nutrient levels. Plantlets were cultured for 30 d under low far-red light (LFR) or high far-red light (HFR) conditions and different nutrient levels (full, half, and quarter). HFR reduced leaf and branch number, dry weight, and accumulation of chlorophylls (Chl) and carotenoids (Car), while increasing plant height. Lower nutrient levels increased plant height and leaf number, but decreased branch number, Chl, and Car. HFR significantly increased total phenolic content (TPC), rutin, and rosmarinic acid levels, while total flavonoid content decreased. As nutrient levels decreased, TPC and rosmarinic acid declined. HFR induced significant DPPH scavenging activity, while reducing power increased with higher far-red light and nutrient levels. The ferrous ion chelating effect under LFR reduced with lower nutrient levels. There were strong correlations among TPC, rosmarinic acid, DPPH scavenging activity, and reducing power. In conclusion, HFR inhibited plantlet growth but enhanced secondary metabolite accumulation and antioxidant capacity. Different nutrient levels stimulated diverse growth responses, while elevated nutrient levels promoted secondary metabolite production. This study demonstrated the responses of growth, secondary metabolite accumulation, and antioxidant activity in the in vitro cultured P. vulgaris to supplemental far-red light and various nutrient levels.\",\"PeriodicalId\":56066,\"journal\":{\"name\":\"Agronomy-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy13092250\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092250","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

以具有抗氧化能力的药用植物夏枯草(Prunella vulgaris)为研究对象,研究了其对不同远红光强度和营养水平的响应。在低远红光(LFR)或高远红光(HFR)条件下,不同营养水平(全、半、四分之一)培养植株30 d。HFR降低了叶片和分枝数、干重以及叶绿素和类胡萝卜素的积累,增加了株高。低营养水平增加了株高和叶数,但降低了分枝数、Chl和Car。HFR显著提高了总酚、芦丁和迷迭香酸含量,降低了总黄酮含量。随着营养水平的降低,TPC和迷迭香酸含量下降。HFR诱导了显著的DPPH清除活性,而还原能力随着远红光和营养水平的增加而增加。铁离子螯合作用随养分水平的降低而降低。TPC、迷迭香酸、DPPH清除能力和还原能力之间存在较强的相关性。综上所述,HFR抑制了植株生长,但增强了次生代谢物积累和抗氧化能力。不同的营养水平刺激了不同的生长反应,而营养水平的提高促进了次生代谢物的产生。本研究研究了体外培养的紫花蓟马的生长、次生代谢物积累和抗氧化活性对补充远红光和不同营养水平的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Far-Red Light and Nutrient Level on the Growth and Secondary Metabolites of the In Vitro Culture of Prunella vulgaris
Prunella vulgaris, a medicinal plant with antioxidant capacity, was investigated for its response to varying intensities of far-red light and nutrient levels. Plantlets were cultured for 30 d under low far-red light (LFR) or high far-red light (HFR) conditions and different nutrient levels (full, half, and quarter). HFR reduced leaf and branch number, dry weight, and accumulation of chlorophylls (Chl) and carotenoids (Car), while increasing plant height. Lower nutrient levels increased plant height and leaf number, but decreased branch number, Chl, and Car. HFR significantly increased total phenolic content (TPC), rutin, and rosmarinic acid levels, while total flavonoid content decreased. As nutrient levels decreased, TPC and rosmarinic acid declined. HFR induced significant DPPH scavenging activity, while reducing power increased with higher far-red light and nutrient levels. The ferrous ion chelating effect under LFR reduced with lower nutrient levels. There were strong correlations among TPC, rosmarinic acid, DPPH scavenging activity, and reducing power. In conclusion, HFR inhibited plantlet growth but enhanced secondary metabolite accumulation and antioxidant capacity. Different nutrient levels stimulated diverse growth responses, while elevated nutrient levels promoted secondary metabolite production. This study demonstrated the responses of growth, secondary metabolite accumulation, and antioxidant activity in the in vitro cultured P. vulgaris to supplemental far-red light and various nutrient levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agronomy-Basel
Agronomy-Basel Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍: Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization Design and Parameter Optimization of a Negative-Pressure Peanut Fruit-Soil Separating Device Tomato Recognition and Localization Method Based on Improved YOLOv5n-seg Model and Binocular Stereo Vision Compost Tea as Organic Fertilizer and Plant Disease Control: Bibliometric Analysis Silver and Hematite Nanoparticles Had a Limited Effect on the Bacterial Community Structure in Soil Cultivated with Phaseolus vulgaris L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1