Shigeru Hanamata, Jumpei Sawada, B. Toh, Seijiro Ono, K. Ogawa, Togo Fukunaga, K. Nonomura, Takamitsu Kurusu, K. Kuchitsu
{"title":"在花粉成熟过程中监测水稻绒毡层细胞的自噬。","authors":"Shigeru Hanamata, Jumpei Sawada, B. Toh, Seijiro Ono, K. Ogawa, Togo Fukunaga, K. Nonomura, Takamitsu Kurusu, K. Kuchitsu","doi":"10.5511/PLANTBIOTECHNOLOGY.19.0417A","DOIUrl":null,"url":null,"abstract":"We have previously shown that autophagy is required for post meiotic anther development including programmed cell death-mediated degradation of the tapetum and pollen maturation in rice. However, the spatiotemporal dynamics of autophagy in the tapetum remain poorly understood. We here established an in vivo imaging technique to analyze the dynamics of autophagy in rice tapetum cells by expressing green fluorescent protein-tagged AtATG8, a marker for autophagosomes. 3D-imaging analysis revealed that the number of autophagosomes/autophagy-related structures is extremely low at the tetrad stage (stage 8), and autophagy is dramatically induced at the uninucleate stages (stage 9-10) throughout the tapetal cells during anther development. The present monitoring system for autophagy offers a powerful tool to analyze the regulation of autophagy in rice tapetal cells during pollen maturation.","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"36 2 1","pages":"99-105"},"PeriodicalIF":1.4000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5511/PLANTBIOTECHNOLOGY.19.0417A","citationCount":"9","resultStr":"{\"title\":\"Monitoring autophagy in rice tapetal cells during pollen maturation.\",\"authors\":\"Shigeru Hanamata, Jumpei Sawada, B. Toh, Seijiro Ono, K. Ogawa, Togo Fukunaga, K. Nonomura, Takamitsu Kurusu, K. Kuchitsu\",\"doi\":\"10.5511/PLANTBIOTECHNOLOGY.19.0417A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have previously shown that autophagy is required for post meiotic anther development including programmed cell death-mediated degradation of the tapetum and pollen maturation in rice. However, the spatiotemporal dynamics of autophagy in the tapetum remain poorly understood. We here established an in vivo imaging technique to analyze the dynamics of autophagy in rice tapetum cells by expressing green fluorescent protein-tagged AtATG8, a marker for autophagosomes. 3D-imaging analysis revealed that the number of autophagosomes/autophagy-related structures is extremely low at the tetrad stage (stage 8), and autophagy is dramatically induced at the uninucleate stages (stage 9-10) throughout the tapetal cells during anther development. The present monitoring system for autophagy offers a powerful tool to analyze the regulation of autophagy in rice tapetal cells during pollen maturation.\",\"PeriodicalId\":20411,\"journal\":{\"name\":\"Plant Biotechnology\",\"volume\":\"36 2 1\",\"pages\":\"99-105\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5511/PLANTBIOTECHNOLOGY.19.0417A\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5511/PLANTBIOTECHNOLOGY.19.0417A\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/PLANTBIOTECHNOLOGY.19.0417A","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Monitoring autophagy in rice tapetal cells during pollen maturation.
We have previously shown that autophagy is required for post meiotic anther development including programmed cell death-mediated degradation of the tapetum and pollen maturation in rice. However, the spatiotemporal dynamics of autophagy in the tapetum remain poorly understood. We here established an in vivo imaging technique to analyze the dynamics of autophagy in rice tapetum cells by expressing green fluorescent protein-tagged AtATG8, a marker for autophagosomes. 3D-imaging analysis revealed that the number of autophagosomes/autophagy-related structures is extremely low at the tetrad stage (stage 8), and autophagy is dramatically induced at the uninucleate stages (stage 9-10) throughout the tapetal cells during anther development. The present monitoring system for autophagy offers a powerful tool to analyze the regulation of autophagy in rice tapetal cells during pollen maturation.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.