Mayzonee Ligaray, Minjeong Kim, J. Shim, Jongkwan Park, K. Cho
{"title":"GAC:Orbitrap对实际灰水中有机物吸附性能的评价","authors":"Mayzonee Ligaray, Minjeong Kim, J. Shim, Jongkwan Park, K. Cho","doi":"10.12989/MWT.2019.10.6.471","DOIUrl":null,"url":null,"abstract":"The complex combination of organic contaminants in the wastewater made water treatment challenging; hence, organic matter in water bodies is usually measured in terms of organic carbon. Since it is important to identify the types of compounds when deciding suitable treatment methods, this study implemented a quantitative and qualitative analysis of the organic matter content in an actual graywater sample from Ulsan, Republic of Korea using mass spectroscopy (MS). The graywater was treated using adsorption to remove the organic contaminants. Using orbitrap MS, the organic matter content between an untreated graywater and the treated effluent were compared which yielded a significant formula count difference for the samples. It was revealed that CHON formula has the highest removal count. Isotherm studies found that the Freundlich equation was the best fit with a coefficient of determination (R2) of 0.9705 indicating a heterogenous GAC surface with a multilayer characteristic. Kinetics experiments fit the pseudo-second order equation with an R2 of 0.9998 implying that chemisorption is the rate-determining step between the organic compounds and GAC at rate constant of 52.53 g/mg•h. At low temperatures, the reaction between GAC and organic compounds were found to be spontaneous and exothermic. The conditions for optimization were set to achieve a maximum DOC and TN removal which yielded removal percentages of 94.59% and 80.75% for the DOC and TN, respectively. The optimum parameter values are the following: pH 6.3, 2.46 g of GAC for every 30 mL of graywater sample, 23.39 hrs contact time and 38.6 Celcius degree.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":"10 1","pages":"471-484"},"PeriodicalIF":0.8000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance evaluation of organic matter adsorption from actual graywater using GAC: Orbitrap\",\"authors\":\"Mayzonee Ligaray, Minjeong Kim, J. Shim, Jongkwan Park, K. Cho\",\"doi\":\"10.12989/MWT.2019.10.6.471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex combination of organic contaminants in the wastewater made water treatment challenging; hence, organic matter in water bodies is usually measured in terms of organic carbon. Since it is important to identify the types of compounds when deciding suitable treatment methods, this study implemented a quantitative and qualitative analysis of the organic matter content in an actual graywater sample from Ulsan, Republic of Korea using mass spectroscopy (MS). The graywater was treated using adsorption to remove the organic contaminants. Using orbitrap MS, the organic matter content between an untreated graywater and the treated effluent were compared which yielded a significant formula count difference for the samples. It was revealed that CHON formula has the highest removal count. Isotherm studies found that the Freundlich equation was the best fit with a coefficient of determination (R2) of 0.9705 indicating a heterogenous GAC surface with a multilayer characteristic. Kinetics experiments fit the pseudo-second order equation with an R2 of 0.9998 implying that chemisorption is the rate-determining step between the organic compounds and GAC at rate constant of 52.53 g/mg•h. At low temperatures, the reaction between GAC and organic compounds were found to be spontaneous and exothermic. The conditions for optimization were set to achieve a maximum DOC and TN removal which yielded removal percentages of 94.59% and 80.75% for the DOC and TN, respectively. The optimum parameter values are the following: pH 6.3, 2.46 g of GAC for every 30 mL of graywater sample, 23.39 hrs contact time and 38.6 Celcius degree.\",\"PeriodicalId\":18416,\"journal\":{\"name\":\"Membrane Water Treatment\",\"volume\":\"10 1\",\"pages\":\"471-484\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membrane Water Treatment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/MWT.2019.10.6.471\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2019.10.6.471","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Performance evaluation of organic matter adsorption from actual graywater using GAC: Orbitrap
The complex combination of organic contaminants in the wastewater made water treatment challenging; hence, organic matter in water bodies is usually measured in terms of organic carbon. Since it is important to identify the types of compounds when deciding suitable treatment methods, this study implemented a quantitative and qualitative analysis of the organic matter content in an actual graywater sample from Ulsan, Republic of Korea using mass spectroscopy (MS). The graywater was treated using adsorption to remove the organic contaminants. Using orbitrap MS, the organic matter content between an untreated graywater and the treated effluent were compared which yielded a significant formula count difference for the samples. It was revealed that CHON formula has the highest removal count. Isotherm studies found that the Freundlich equation was the best fit with a coefficient of determination (R2) of 0.9705 indicating a heterogenous GAC surface with a multilayer characteristic. Kinetics experiments fit the pseudo-second order equation with an R2 of 0.9998 implying that chemisorption is the rate-determining step between the organic compounds and GAC at rate constant of 52.53 g/mg•h. At low temperatures, the reaction between GAC and organic compounds were found to be spontaneous and exothermic. The conditions for optimization were set to achieve a maximum DOC and TN removal which yielded removal percentages of 94.59% and 80.75% for the DOC and TN, respectively. The optimum parameter values are the following: pH 6.3, 2.46 g of GAC for every 30 mL of graywater sample, 23.39 hrs contact time and 38.6 Celcius degree.
期刊介绍:
The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.