{"title":"梁柱节点建模对非延性钢筋混凝土框架柱性能评估的影响","authors":"S. C. Girgin","doi":"10.18400/tekderg.456752","DOIUrl":null,"url":null,"abstract":"Seismic performance evaluation of non-seismically detailed reinforced concrete buildings requires proper analytical modeling approaches for beam-column joints which are most vulnerable parts. This study investigates the influence of beam column joint modeling assumptions on performance evaluation of non-ductile RC buildings. Numerical simulation model includes truss-based elements for beam-column connections and fiber-based elements for beams and columns. Two-dimensional four- and six- story reinforced concrete frames of an existing RC building are designed and analyzed by conducting incremental dynamic analyses. Column chord rotations and corresponding strains are compared with code provisions for performance assessment of non-ductile RC frames.","PeriodicalId":49442,"journal":{"name":"Teknik Dergi","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Modeling Beam-Column Joints on Performance Assessment of Columns in Non-Ductile RC Frames\",\"authors\":\"S. C. Girgin\",\"doi\":\"10.18400/tekderg.456752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic performance evaluation of non-seismically detailed reinforced concrete buildings requires proper analytical modeling approaches for beam-column joints which are most vulnerable parts. This study investigates the influence of beam column joint modeling assumptions on performance evaluation of non-ductile RC buildings. Numerical simulation model includes truss-based elements for beam-column connections and fiber-based elements for beams and columns. Two-dimensional four- and six- story reinforced concrete frames of an existing RC building are designed and analyzed by conducting incremental dynamic analyses. Column chord rotations and corresponding strains are compared with code provisions for performance assessment of non-ductile RC frames.\",\"PeriodicalId\":49442,\"journal\":{\"name\":\"Teknik Dergi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknik Dergi\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18400/tekderg.456752\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknik Dergi","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18400/tekderg.456752","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effect of Modeling Beam-Column Joints on Performance Assessment of Columns in Non-Ductile RC Frames
Seismic performance evaluation of non-seismically detailed reinforced concrete buildings requires proper analytical modeling approaches for beam-column joints which are most vulnerable parts. This study investigates the influence of beam column joint modeling assumptions on performance evaluation of non-ductile RC buildings. Numerical simulation model includes truss-based elements for beam-column connections and fiber-based elements for beams and columns. Two-dimensional four- and six- story reinforced concrete frames of an existing RC building are designed and analyzed by conducting incremental dynamic analyses. Column chord rotations and corresponding strains are compared with code provisions for performance assessment of non-ductile RC frames.
期刊介绍:
The scope of Teknik Dergi is naturally confined with the subjects falling in the area of civil engineering. However, the area of civil engineering has recently been significantly enlarged, even the definition of civil engineering has somewhat changed.
Half a century ago, engineering was simply defined as “the art of using and converting the natural resources for the benefit of the mankind”. Today, the same objective is expected to be realised (i) by complying with the desire and expectations of the people concerned and (ii) without wasting the resources and within the sustainability principles. This change has required an interaction between engineering and social and administrative sciences. Some subjects at the borderline between civil engineering and social and administrative sciences have consequently been included in the area of civil engineering.
Teknik Dergi defines its scope in line with this understanding. However, it requires the papers falling in the borderline to have a significant component of civil engineering.